对于正在使用 GitLab 国际站托管代码的企业和研发团队,除迁移至极狐 GitLab 外,国内其他主流的 DevOps 平台也具有完备的产品能力,为开发者提供了更多的选择。其中,阿里云云效也提供了针对常见代码托管平台如 GitHub、GitLab 简单便捷的迁移方案,帮助用户快速完成核心代码数据的迁移,确保代码资产安全。
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
本文介绍了从Istio+k8s环境迁移到阿里云ASM+ACK环境的渐进式方法,通过配置虚拟服务和入口服务实现新老集群间的服务调用与流量转发,确保业务连续性与平滑迁移
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
本文介绍了在云原生场景下,AIGC 模型服务的工程挑战和Fluid 在云原生 AIGC 模型推理场景的优化。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。