近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
近年来,针对网站的攻击形式愈发多样,手段也变得更加隐蔽,使用浏览器拨测来监控服务的整个生命周期有助于及时发现攻击,保护核心业务链路不受损。阿里云监控浏览器拨测使用真实的浏览器进行拨测,通过提供丰富的断言能力和脚本录制能力护航服务的全生命周期和核心业务链路,助力开发者更好地监控服务的可用性,消除潜在风险。
在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
当系统出现大量或者重大的错误却不被人感知,将会对业务产生影响,从而导致资产损失。当竞争对手实施了新战术,却无法及时感知,跟不上竞争对手的节奏,总是追着对方尾巴走。当要做决策的时候,海量的业务数据增长却无法实时看到聚合结果,决策总是凭借过往经验或者过时的数据分析之上。