背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍PolarDB 开源版 通过 pgpointcloud 实现高效孪生数据存储...
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。
本文首先介绍了SQL限流的使用场景,它可通过限制边缘业务查询,留出资源来为核心业务保驾护航。接着是功能简介,PolarDB-X结合自身云原生分布式的特点,提供了具有简洁易用的交互接口、多样的限流策略、平均复杂度O(1)、节点级限流实例级监控的SQL限流能力。
本次方案主要是针对阿里云国际站客户,企业在实际使用阿里云的过程中如何做好运维检测的一些多产品结合的方案介绍。 本篇文章的重点会放在检测(Detection)部分,会具体介绍涉及使用产品配置,FAQ等等,同时对整体的理论框架进行简单的介绍,帮助大家更好理解本部分在运维工作中的分属情况,更好的建立整体性的概念。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。