当代AI来势汹汹,本文从AI的特点、对研发的挑战、AI的应用工程和场景分化等剖析了AI时代的应用工程化架构演进之路。
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。