本文主要介绍了阿里云OpenSearch在Text-to-SQL任务中的最新进展和技术细节。
本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
本篇文章我们将详细介绍怎么轻松在 Anolis OS 上使用 Kata Containers 安全容器
在多维度的优化加持下,Alibaba Cloud Linux 3 解决了 AI 开发人员的痛点问题,让 AI 开发体验更容易更高效。
AI技术迎来了“百花齐放”的春天,这既是我们的挑战也是机会。而AI+千行百业创造了无限可能,也为独立开发者提供了大量的资源、支持以及学习经验的机会。本文分享一篇摘录自Hexmos 期刊的AI 时代的 GPU 生存工具包。