官方博客-第35页-阿里云开发者社区

  • 2024-05-15
    406

    百亿大规模图在广告场景的应用

    这篇摘要主要介绍了美团外卖在搜索推荐业务中如何利用图技术解决挑战,包括外卖广告搜索推荐业务的介绍、异构大图的演进、大规模图引擎的建设,以及系统的总结和展望。

  • 145445

    一键生成视频,用 PAI-EAS 部署 AI 视频生成模型 SVD 工作流

    本教程将带领大家免费领取阿里云PAI-EAS的免费试用资源,并且带领大家在 ComfyUI 环境下使用 SVD的模型,根据任何图片生成一个小短视频。

  • 2024-05-16
    88524

    通义千问 2.5 “客串” ChatGPT4,看这篇让你分清楚

    这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。

    88,524
  • 2024-07-09
    1465

    阿里云百炼应用实践系列-基于LlamaIndex的文档问答助手

    本文以阿里云百炼官方文档问答助手为例,介绍如何基于阿里云百炼平台打造基于LlamaIndex的RAG文档问答产品。我们基于阿里云百炼平台的底座能力,以官方帮助文档为指定知识库,搭建了问答服务,支持钉钉、Web访问。介绍了相关技术方案和主要代码,供开发者参考。

  • 337

    Redis Proxy RT上升后连接倾斜

    本文细致地描述了关于Redis Proxy RT上升后连接倾斜问题的排查过程和根本原因,最后给出了优化方案。

  • 2024-08-06
    1362

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,362
  • 2024-08-26
    287

    打破传统叙事逻辑,构建基于原子化任务的人机交互

    在复杂中后台设计中,为解决配置变更影响多场景问题,提出结合正向和逆向信息架构,采用原子化任务,动态组合任务,降低用户和开发成本,优化体验并改变已有的产品迭代和人机交互模式。未来可能发展为AI自动根据业务规则和用户行为生成最佳方案。

    287
  • 2024-09-06
    292

    MacTalk 测评通义灵码,实现“微信表情”小功能

    墨问西东创始人池建强分享了团队使用通义灵码的经验。

  • 1
    ...
    34
    35
    36
    ...
    76
    到第