本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
日志审计的必要性在于其能够帮助企业和组织落实法律要求,打破信息孤岛和应对安全威胁。选择 SLS 下日志审计应用,一方面是选择国家网络安全专用认证的日志分析产品,另一方面可以快速帮助大型公司统一管理多组地域、多个账号的日志数据。除了在日志服务中存储、查看和分析日志外,还可通过报表分析和告警配置,主动发现潜在的安全威胁,增强云上资产安全。
对于正在使用 GitLab 国际站托管代码的企业和研发团队,除迁移至极狐 GitLab 外,国内其他主流的 DevOps 平台也具有完备的产品能力,为开发者提供了更多的选择。其中,阿里云云效也提供了针对常见代码托管平台如 GitHub、GitLab 简单便捷的迁移方案,帮助用户快速完成核心代码数据的迁移,确保代码资产安全。
本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
容管理系统是很常见的一种web应用场景,可以用到个人独立站,企业官网展示等场景,具有很高的实用价值,一个标准的内容管理系统主要由三个部分组成 主站展示部分、后台管理系统、API接口服务,本篇文章会以一个已有内容管理系统的Serverless架构重构展开,介绍改造的基本思路,改造细节,以及性能优化业务可观测设计等。涉及大家关心的Serverless生产遇到的一些问题,比如数据库、日志、动静态分离、调试、维护、灰度方案等。最真实的展现Serverless架构的实施落地细节。
本篇文章我们将详细介绍怎么轻松在 Anolis OS 上使用 Kata Containers 安全容器
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑