本期文章,我们会介绍一下AgentScope的一个设计哲学(Agent-oriented programming)
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
历经 15 载,如今的飞天盘古系统已迭代至第三代,数千万行代码和 1,000 余项专利,从大规模、到高性能、到高效能的分布式存储系统的演进,更高效地让数据中心成为一台计算机。