目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
很多平台类应用或系统(如电商CRM平台、仓库订单平台等等),它们的服务模型是围绕用户维度(这里的用户维度可以是一个卖家或品牌,可以是一个仓库,等等)展开的。因此,这类型的平台业务,为了支持业务系统的水平扩展性,业务的数据库通常是按用户维度进行水平切分。
MySQL内存分配与管理总体上分为上中下三篇介绍,本篇为中篇,主要介绍 InnoDB 的内存构成和使用,代码版本主要基于8.0.25。
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
CLR集成为SQL Server提供了强大的扩展能力,突破了T-SQL的限制,极大地拓展了SQL 的应用场景,如:复杂字符串处理、高性能计算、图像处理、机器学习集成、自定义加密解密等,使开发人员能够利用 .NET Framework的丰富功能来处理复杂的数据库任务。