在应用开发测试验证通过后、进行生产发布前,为了降低新版本发布带来的风险,期望能够先部署到灰度环境,用小部分业务流量进行全链路灰度验证,验证通过后再全量发布生产。本文主要介绍如何通过阿里云MSE 微服务引擎和云效应用交付平台AppStack 实现灰度发布。
在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
利用阿里云计算巢Appflow,通过控制台配置即可顺利将您自己开发或微调的大模型接入钉钉或其他通信软件群聊,帮您解决以下各类场景的模型调用需求: 1. 在钉钉群接入自己微调的领域大模型做问答或智能答疑; 2. 微调后的大模型在钉钉群或其他群聊中共同测试效果 3. …
大模型不知不觉已经火了快一年了,拥有一个能够随时对话使用的大模型已经成为不少人的刚需。然而,最大的问题可能是如何访问和调用对话模型。如果,我是说如果,能在您的即时通讯软件钉钉中直接与通义千问对话,是不是会让这一切更方便快捷?! 按照传统方案,我们要实现上述场景可能需要非常繁琐的接入步骤,甚至还需要自行开发很多代码,这样的准入门槛实在,太!高!啦! 而今天,我要向各位隆重介绍一个新的解决方案——阿里云计算巢AppFlow应用与数据集成平台,无需任何代码开发,简单快捷,自动连接企业内部应用与外部应用或数据,搭建企业的自动化服务流程,帮助个人、企业降低了集成实施的周期和成本。
随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
Salt基于Python构建,是一个事件驱动的自动化工具和框架,用于部署、配置和管理复杂的IT系统。使用Salt来自动化公共基础设施管理任务,并确保基础设施的所有组件都以一致的期望状态运行。 本文向您介绍如何开通计算巢上的Salt服务,以及部署流程和使用说明。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...
如果您正在寻找将 Terraform 生态系统与 Kubernetes 世界粘合在一起的东西,那么恭喜!你在这个文章中得到了你想要的答案。准备 Terraform Module转化 Terrafrom 模块作为 KubeVela 扩展组件类型准备 KubeVela 环境部署带有公网 IP 地址的 ECS 实例并启动 FRP 服务使用 FRP 服务清理环境