LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
研发规范的目标,是为了解决或降低出现软件危机的风险。但传统流水线受限于工具的定位,无法解决研发规范的落地问题,需要在更高的层面来解决。阿里云云效团队经过内部启发后推出的新产品:云效应用交付平台 AppStack 给出了解决方案,快来使用体验吧!
Serverless的理念是即时弹性,用完即走。服务并非长时间运行,这也就意味着像websocket这种长链接的请求模式看起来并不适合Serverless,但是否有其他的办法既能满足长连接模式请求,也能够利用Serverless本身特性呢?答案是肯定的,我们通过API网关来解决webscoket连接的问题,然后由网关触达Serverless服务的后端,本文以弹幕场景为例来介绍如何使用Serverless架构实现全双工通信。
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
本方案实现在阿里云Serverless函数计算服务中搭建图片批量打马赛克服务,具备自动将用户上传到OSS桶内的图片批量打上马赛克功能,实现用户敏感信息自动化处理。