XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
本次方案主要是针对阿里云国际站客户,企业在实际使用阿里云的过程中如何做好运维检测的一些多产品结合的方案介绍。 本篇文章的重点会放在检测(Detection)部分,会具体介绍涉及使用产品配置,FAQ等等,同时对整体的理论框架进行简单的介绍,帮助大家更好理解本部分在运维工作中的分属情况,更好的建立整体性的概念。
Spring Cloud 版本众多,组件也在不断扩充中,是一个非常强大的微服务框架,不过也不是万能的,任何框架都不是完美的,需要适当的评估是否适合自己。
本文从常见的微服务治理场景出发,从流量路由这个场景入手。先是根据流量路由的实践设计流量路由的 Spec,同时在 Spring Cloud Alibaba 中实践遵循 OpenSergo 标准的流量路由能力。