Serverless的理念是即时弹性,用完即走。服务并非长时间运行,这也就意味着像websocket这种长链接的请求模式看起来并不适合Serverless,但是否有其他的办法既能满足长连接模式请求,也能够利用Serverless本身特性呢?答案是肯定的,我们通过API网关来解决webscoket连接的问题,然后由网关触达Serverless服务的后端,本文以弹幕场景为例来介绍如何使用Serverless架构实现全双工通信。
本文是[全景剖析容器网络数据链路]第一部分,主要介绍Kubernetes Flannel模式下,数据面链路的转转发链路
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)-...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、...
本方案实现在阿里云Serverless函数计算服务中搭建图片批量打马赛克服务,具备自动将用户上传到OSS桶内的图片批量打上马赛克功能,实现用户敏感信息自动化处理。
部分金融行业客户的传统核心使用OceanBase替换国外商业数据库的过程中,需要针对业务模型和数据模型进行重构,数据库压测提出了针对单交易耗时和TPS的硬性指标,以下内容是OceanBase数据库调优过程中的一些具体优化实践。
ADB PG是一个经典MPP数据库,长项在于查询分析处理,面对客户联机分析和联机交易(HTAP)场景就显得力不从心,我们在某银行核心系统DB2 for LUW迁移到ADB PG时就遇到类似问题,因此我们提出ADB PG+RDS PG混搭技术架构,来解决客户此类HTAP需求。该混搭架构的精髓在于扬长避短,充分发挥分析型数据库和交易型数据库的长处和特性,分析型数据库专注于数据加工跑批场景,然后批量加工的结果数据卸载到RDS PG,通过RDS PG对外提供高并发对客交易服务。
Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。