代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
随着业务在金融、保险和商城领域的不断扩展,众安保险建设 CDP 平台以提供自动化营销数据支持。早期 CDP 平台依赖于 Spark + Impala + Hbase + Nebula 复杂的技术组合,这不仅导致数据分析形成数据孤岛,还带来高昂的管理及维护成本。为解决该问题,众安保险引入 Apache Doris,替换了早期复杂的技术组合,不仅降低了系统的复杂性,打破了数据孤岛,更提升了数据处理的效率。
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案