近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
本文首先介绍了遗留代码的概念,并对遗留代码进行了分类。针对不同类型的遗留代码,提供了相应的处理策略。此外,本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。
10 月 21 日—11 月 29 日,三步轻松完成体验,即可获得精美电脑包,(活动期间每个工作日限量 30 个,先到先得)参与活动官网邀请挑战,更有罗马仕充电宝、帆布袋等好礼相送。
通义灵码能够结合企业知识库的私域数据,生成贴合企业特点的回答。充分发挥检索增强技术的优势,构建高质量的企业知识数据以及合理的知识库权限管理是必不可少的。本文将为您详细介绍如何构造与管理一个高质量的企业知识库。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
得益于阿里云函数计算的产品能力,魔搭 SwingDeploy 后的模型推理 API 服务默认具备极致弹性伸缩(缩零能力)、GPU 虚拟化(最小 1GB 显存粒度)、异步调用能力、按用付费、闲置计费等能力,这些能力帮助算法工程师大大加快了魔搭开源模型投入生产的生命周期。