官方博客-第14页-阿里云开发者社区

  • 2024-08-27
    747

    面向AI场景的数据处理和数据检索

    本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。

    747
  • 2024-08-26
    114

    打破传统叙事逻辑,构建基于原子化任务的人机交互

    在复杂中后台设计中,为解决配置变更影响多场景问题,提出结合正向和逆向信息架构,采用原子化任务,动态组合任务,降低用户和开发成本,优化体验并改变已有的产品迭代和人机交互模式。未来可能发展为AI自动根据业务规则和用户行为生成最佳方案。

    114
  • 2024-08-23
    157

    灵魂拷问-前端的作用--chrome插件篇

    本文会从浏览器插件应用场景切入,穿插插件基础能力和常见入口的介绍,核心回答如下三个问题:插件可以被使用在哪些场景?不同的使用场景我们的主要代码实现思路是怎样的?我们可以从哪些角度入手自己开发一款可以落地实用的浏览器插件?

    157
  • 2024-08-22
    783

    阿里云百炼应用实践系列-10分钟在企业微信中集成一个 AI 助手

    在阿里云平台上,您只需十分钟,无需任何编码,即可在企业微信上为您的组织集成一个具备大模型能力的AI助手。此助手可24小时响应用户咨询,解答各类问题,尤其擅长处理私域问题,从而成为您企业的专属助手,有效提升用户体验及业务竞争力。

    783
  • 2024-08-21
    1045

    阿里云百炼应用实践系列-10分钟构建能主动提问的智能导购

    通过使用“百炼”平台,您可以快速构建一个多代理(Multi-Agent)架构的智能导购助手。该助手能够通过多轮互动了解顾客的具体需求,收集详细信息后,利用“百炼”的知识检索增强功能或已有的商品数据库进行商品搜索,为顾客推荐最合适的产品。

    1,045
  • 2024-08-21
    137

    谈谈优雅的钩子--bpftrace

    bpftrace是一个内核跟踪工具,简单来说就是在函数上挂个钩子,挂上钩子后就可以将函数的入参和返回值取出来再放入程序进行二次编程,最终能让程序按照我们的意图来对函数进行观测。

    137
  • 2024-08-21
    820

    用好通义灵码,让这款 AI 编码助手帮你做更多工作

    通义灵码提供了一系列快捷键和配置选项以增强开发体验。

  • 2024-08-19
    562

    表格存储(Tablestore)支持 Serverless 低成本向量检索服务

    在当今 GPT 技术盛行的时代,大模型推动了向量检索技术的迅猛发展。向量检索相较于传统的基于关键词的检索方法,能够更精准地捕捉数据之间的语义关系,极大提升了信息检索的效果。特别是在自然语言处理、计算机视觉等领域,向量能够将不同模态的数据在同一空间中进行表达和检索,推动了智能推荐、内容检索、RAG 和知识库等应用的广泛普及。阿里云表格存储(Tablestore)的多元索引提供了向量检索能力。表格存储是一款 Serverless 的分布式结构化数据存储服务,诞生于 2009 年阿里云成立时,主要特点是分布式、Serverless 开箱即用、按量付费、水平扩展和查询功能丰富和性能优秀等。

  • 2024-08-16
    13858

    RAG效果优化:高质量文档解析详解

    本文介绍了如何通过高质量的文档解析提升RAG系统整体的效果。

  • 1
    ...
    13
    14
    15
    ...
    32
    到第
    14/32