本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
本文旨在从 MCP 的技术原理、降低 MCP Server 构建复杂度、提升 Server 运行稳定性等方面出发,分享我们的一些实践心得。
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
随着 AI 技术的飞速发展,MCP(模型上下文协议) 逐渐崭露头角。这项由 Anthropic 公司(Claude 的创造者)于 2024 年 11 月推出的开放协议,正在重新定义 AI 与数字世界的交互方式。这项开放协议不仅让 AI 突破传统对话边界,更赋予其执行现实任务的能力,堪称人工智能向"行动智能体"进化的里程碑。然而从火热概念到落地业务,MCP 还需要找到云端“好搭档”。
Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。
本文主要讲述通过 Nacos+Higress 的方案实现0代码改造将 Agent 连接到存量应用,能够显著降低存量应用的改造成本。