使用maxcompute开发ODPS Spark任务,使用spark.sql 执行rename分区 sql: alter table $tableName partition(date='$dateFrom',source_id=$sourceFrom) rename to partition(date='$dateTo',source_id=$sourceTo), 任务报错退出。
报错信息如下:
org.apache.spark.sql.AnalysisException: ALTER TABLE RENAME PARTITION is only supported with v1 tables.
at org.apache.spark.sql.catalyst.analysis.ResolveSessionCatalog.org$apache$spark$sql$catalyst$analysis$ResolveSessionCatalog$$parseV1Table(ResolveSessionCatalog.scala:588) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.ResolveSessionCatalog$$anonfun$apply$1.applyOrElse(ResolveSessionCatalog.scala:472) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.ResolveSessionCatalog$$anonfun$apply$1.applyOrElse(ResolveSessionCatalog.scala:48) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$3(AnalysisHelper.scala:90) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:90) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:221) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.ResolveSessionCatalog.apply(ResolveSessionCatalog.scala:48) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.ResolveSessionCatalog.apply(ResolveSessionCatalog.scala:39) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:216) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) ~[scala-library-2.12.10.jar:?]
at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) ~[scala-library-2.12.10.jar:?]
at scala.collection.immutable.List.foldLeft(List.scala:89) ~[scala-library-2.12.10.jar:?]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:213) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:205) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at scala.collection.immutable.List.foreach(List.scala:392) ~[scala-library-2.12.10.jar:?]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:205) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:196) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:190) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:155) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:183) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:183) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:174) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:228) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:173) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:73) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) ~[spark-catalyst_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:143) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:143) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:73) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:71) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:63) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:98) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:615) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:610) ~[spark-sql_2.12-3.1.1.jar:3.1.1]
根据错误信息,ALTER TABLE RENAME PARTITION
操作仅支持v1表。这意味着在MaxCompute中,Spark SQL目前可能不支持对分区表进行重命名操作。您需要考虑使用MaxCompute提供的原生命令或SDK来进行分区重命名操作。
根据报错信息,问题出在执行alter table $tableName partition(date='$dateFrom',source_id=$sourceFrom) rename to partition(date='$dateTo',source_id=$sourceTo)
这条SQL语句时,提示ALTER TABLE RENAME PARTITION is only supported with v1 tables.
,即仅支持v1表的分区重命名操作。
要解决这个问题,你可以尝试以下方法:
ALTER TABLE $tableName SET PROPERTIES('version'='1');
ALTER TABLE
命令分别重命名分区。首先删除旧分区,然后添加新分区:ALTER TABLE $tableName DROP PARTITION (date='$dateFrom', source_id=$sourceFrom);
ALTER TABLE $tableName ADD PARTITION (date='$dateTo', source_id=$sourceTo) LOCATION '新的分区路径';
注意:请将新的分区路径
替换为实际的新分区路径。
在使用MaxCompute开发ODPS Spark任务时,如果使用spark.sql执行rename分区操作,可能会遇到任务报错退出的情况。这可能是因为MaxCompute的分区表不支持直接使用ALTER ABLE语句进行分区重方法:
使用MaxCaxCompute控制台或命令行工具手动重命名分区。具体操作步骤如下:
使用Spark SQL读取原始分区数据,然后将数据写入新的分区。具体操作步骤如下:
使用Spark SQL读取原始分区数据:
from pyspark.sql import SparkSession
spark = SparkSession.builder \n .appName("Rename Partition") \n .getOrCreate()
table_name = "your_table_name"
date_from = "your_date_from"
source_from = "your_source_from"
date_to = "your_date_to"
source_to = "your_source_to"
df = spark.sql(f"SELECT * FROM {table_name} WHERE date='{date_from}' AND source_id='{source_from}'")
将数据写入新的分区:
df.write.partitionBy("date", "source_id").mode("overwrite").saveAable(tame)
最后,删除原始分区:
spark.sql(f"ALTER TABLE {table_name} DROP PARTITION (date='{date_from}', source_id='{source_from}')")
希望以上方法能帮助你解决问题。
在使用MaxCompute开发ODPS Spark任务时,如果使用spark.sql执行rename分区操作,可能会遇到任务报错退出的情况。这可能是因为MaxCompute的分区表不支持直接使用spark.sql进行分重命名操作。
为了解决这个问题,你可以尝试以下方法:
ALTER TABLE
语句来重命名分区。例如:ALTER TABLE tableName RENAME PARTITION (date='dateFrom', source_id=sourceFrom) TO PARTITION (date='dateTo', source_id=sourceTo);
odps
库)来执行分区重命名操作。首先,确保已经安装了odps
库,然后使用以下代码:from odps import ODPS
# 创建ODPS实例
odps = ODPS('<your-access-id>', '<your-access-key>', '<your-project>', endpoint='http://service.odps.aliyun.com/api')
# 获取表对象
table = odps.get_table('tableName')
# 执行分区重命名操作
table.alter_partition('dateFrom', 'sourceFrom').rename_to('dateTo', 'sourceTo')
注意:请将<your-access-id>
、<your-access-key>
和<your-project>
替换为你的MaxCompute项目的实际信息。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。