Flink CDC里之前用mysql数据库join比较慢,所以才改成同步宽表到es,不知道doris,starorcks 这种join性能会比较好吗?
在Flink CDC中,使用Doris和Starrocks进行join操作的性能可能会比MySQL数据库要好。这是因为Doris和Starrocks都是为大规模数据分析而设计的高性能数据库系统,它们在处理大量数据的join操作时具有优化的策略和技术。具体如下:
Doris的优势:
Starrocks的优势:
综上所述,如果之前使用MySQL数据库在Flink CDC中进行join操作时遇到性能瓶颈,那么考虑使用Doris或Starrocks可能会带来性能上的提升。不过,具体的性能提升程度还需要根据实际的数据量、查询复杂度以及系统配置等因素进行测试和评估。此外,选择哪个数据库还需要考虑其他因素,如系统的易用性、稳定性、社区支持和成本等。在实际应用前,建议进行充分的测试和评估,以确保选择的数据库能够满足业务需求并发挥最佳性能。
如果你使用Flink做的是流与流之间的JOIN或者是流与静态数据集的JOIN,并且能够充分利用其时间窗口、事件时间特性以及状态管理机制的话,在合理设计的状态大小和数据倾斜控制下,JOIN性能可以得到较好保证。
Flink本身具有良好的流式处理能力,而Doris、StarRocks等列式存储数据库系统设计上优化了OLAP查询性能,特别是JOIN操作。相较于传统的关系型数据库如MySQL,它们在处理大规模数据JOIN时可能会有更好的表现。但是,JOIN性能还取决于多种因素,包括索引策略、数据分布、并发度、硬件资源等。建议根据实际业务场景测试验证不同方案下的JOIN性能。
Flink CDC 主要用于捕获和处理数据库变更数据流,而不是直接优化JOIN操作。MySQL数据库中JOIN性能慢可能是由于多种原因,例如索引不足、数据量大导致内存溢出、表结构设计不合理等。
Doris(百度智能云的列式存储数据分析系统)和StarRocks(一款高性能分析型数据库)都具有较好的JOIN性能特点:
Doris:
StarRocks:
因此,在实际使用中,如果将Flink CDC获取的数据同步到Doris或StarRocks这样的列式存储系统,并且合理设计表结构、利用好索引、分区等功能,JOIN性能相较于传统关系型数据库如MySQL可能会有显著提升,尤其是在大数据量的OLAP分析场景下。不过具体效果还取决于您的业务场景、数据规模及查询复杂度等因素。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。