Flink中间计算结果如果存到redis的话,checkpoint 如何保证一致性呢 ?
将Flink的中间计算结果存储到Redis中是可行的,但需要确保数据的一致性和准确性。如果在Flink中的数据发生了变化,但是Redis中的数据没有及时更新,可能会导致计算结果不正确。在项目中使用Redis作为中间缓存时,非使用FlinkRedisSink而是引入了spring-data-redis,因为spring-data-redis已经封装了比较全面的操作。
关于Checkpoint如何保证一致性,Flink的状态与容错主要分为以下几个知识点:Checkpoint机制、Savepoint机制和State Backends机制。为了开启checkpoint,需要在代码里或配置文件中进行相应的配置。例如,可以打开checkpoint开关,并设置其执行间隔。同时,需要设置checkpoint模式为EXACTLY_ONCE或其他适合的模式。在有赞实时计算中,对于Flink任务的Checkpoint和Savepoint进行了两个方面的工作,其中之一是对于Flink Checkpoint失败的情况,如果Checkpoint失败过于频繁,平台会及时给用户报警提示。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。