【译】数据湖正在成为新的数据仓库

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 原文链接 https://www.infoworld.com/article/3405443/the-data-lake-is-becoming-the-new-data-warehouse.html?upd=1561666042410 译者:诚历,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。

原文链接 https://www.infoworld.com/article/3405443/the-data-lake-is-becoming-the-new-data-warehouse.html?upd=1561666042410

像公有云数据湖和 Delta Lake 这样的平台指出了一个中央数据枢纽的趋势,用来支持决策和AI驱动的自动化决策。

数据仓库是否再次加入这股浪潮呢,或者会逐渐消亡?

如果你不清楚这个问题的答案也很正常。数据仓库在一方面目前仍处于热门阶段。笔者作为一个长期的行业观察者,看到了在不断创新和创业活动浪潮下行业的快速发展。

这种趋势基本上始于十年前标准设备进入数据仓库主流,然后随着市场向新一代云数仓转移逐渐获得了新动力。在过去几年中,一个云数仓供应商(Snowflake) 在市场上获得了非常多的支持。

数据仓库的衰落

但在另一方面,数据仓库也不断被行业中的新事物所冲击,例如大数据、机器学习和人工智能。这种趋势造成了数据仓库在企业IT优先级下降的印象,但事实上大多数组织至少有一个或者多个数据仓库服务于各种下游应用程序。

数据仓库一直作为企业核心工作服务,是几年前我觉得数据仓库远未消亡的原因,这也可能解释了为什么其他观察者认为他们必须重新定义数据仓库的概念,以使其在数据湖和云计算时代保持相关性。

数据仓库作为一种实践,不仅蓬勃发展,而且现在已被视为云计算行业的重要核心增长。但是,如果你只是关注以此数据仓库标签进入市场的那些平台(例如Snowflake),你也将错过这个领域大部分的动作。

数据湖的兴起

许多人认为“数据湖”正在迅速发展成为下一代数据仓库。对于那些不熟悉这个概念的人来说,数据湖是多结构数据的系统或存储库,它们以原始格式和模式存储,通常作为对象“blob”或文件存储。

数据湖通常用作所有企业数据的单个存储,包括源系统数据的原始副本和用于生成报告,可视化,数据分析和机器学习等任务的转换数据。它们包含分布式文件或对象存储,机器学习模型库以及高度并行化的处理和存储资源集群。并且,数据库通常在读取时使用模式,并使用统计模型从中提取有意义的相关性和模式,而不是对它们存储的对象强制执行通用模式和语义。

这些都与Inmon和Kimball核心概念不一致,这些概念为大多数专业人员的数据仓库方法提供了信息。从根本上说,一个数据仓库主要用来聚合,保留和管理官方认可的“单一版本的真实”数据记录。此概念与所管理数据的特定应用程序域以及使用它的特定用例无关。

如果你怀疑我在那个分数上说的话,请看看Bill Inmon对数据仓库的定义以及Inmon和Ralph Kimball框架的比较。数据仓库通常都是关于数据驱动的决策支持,这使得它可以很好地扩展到AI驱动的推理的新世界。

下一代数据仓库

在过去的一年中,一些备受瞩目的行业公告标志着数据仓库角色的转变。尽管决策支持(也称为商业智能,报告和在线分析处理)仍然是大多数数据仓库的核心用例,但我们看到了其向决策自动化的稳步转变。换句话说,数据仓库现在正支持着数据科学管道,为数据驱动的推理构建了机器学习应用程序。

新一代数据仓库实际上是数据湖,对那些用于构建和训练机器学习模型的清洗,整合和验证的数据进行管理。例如,去年秋天在Amazon re:Invent 大会上,亚马逊网络服务公布了AWS Lake Formation。这种新的托管服务的明确目的是简化和加速安全数据湖的设置。然而,AWS Lake Formation 拥有云数据仓库的所有特点,尽管AWS并没有这样称呼它,实际上已经提供了一个面向决策支持应用程序的经典数据仓库。

AWS Lake Formation的架构和功能类似于数据仓库。实际上,AWS以这种方式来描述它:“数据湖是一个集中的,策划的和安全的存储库,它以原始形式存储所有数据并为分析做好准备。通过数据湖,您可以分解数据孤岛并组合不同类型的分析,以获商业洞察力并指导更好的业务决策。“

另一个例子是 Databricks 最近宣布的 Delta Lake开源项目。 Delta Lake的明确目的(现在可以在Apache 2.0许可下使用)类似于AWS Lake格式:通过对数据湖中维护的数据集的聚合,清洗,管理和治理,以支持机器学习。

Delta Lake 位于现有的内部部署或云数据存储平台之上,可以从Apache Spark访问,例如HDFS,Amazon S3或Microsoft Azure blob存储。 Delta Lake将数据存储在Parquet中,以提供Databricks所称的“事务存储层”.Parquet是一种开源的列式存储格式,无论数据处理框架的选择如何,都可用于Hadoop生态系统中的任何项目。它通过乐观并发可串行化,快照隔离,数据版本控制,回滚和模式实施来支持ACID事务。

Delta Lake和AWS Lake Formation之间的一个关键区别是 Delta Lake 处理该管道中的批量和流数据。另一个是Delta Lake支持所有数据的ACID事务,允许数百个应用程序同时进行多次写入和读取。此外,开发人员可以访问每个Delta Lake的早期版本,以进行审计,回滚或重现其MLFlow机器学习实验的结果。

在最广泛的层面上,Delta Lake似乎与使用最广泛的开源数据仓库项目 Apache Hive 竞争,尽管 Hive 完全依赖基于 HDFS 的存储,并且直到最近才解决对ACID交易的支持。Hive 3一年前被宣布终于为基于Hadoop的数据仓库提供ACID支持。 Hive 3使用delta文件为事务CRUD(创建读取更新删除)表提供操作的原子性和快照隔离。

以AI驱动的决策自动化的基础

这些最近的行业公告 - AWS Lake Formation,Delta Lake和Hive 3预测是数据湖成为所有决策支持和决策自动化应用以及所有交易数据应用的治理中心的日子。为了加速这些趋势,Hive 3和Delta Lake等开源项目需要在供应商和用户之间获得更广泛的吸引力。

“数据仓库”这一术语可能主要指的是商业智能结构化数据的受管理的多域存储。但是,底层数据平台将继续发展,为基于云的人工智能管道提供核心数据治理基础。

AI而非BI正在推动企业数据仓库的发展。

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
8月前
|
存储 数据管理 物联网
深入解析数据仓库与数据湖:建构智能决策的桥梁
在当今信息时代,数据成为企业决策与创新的关键资源。本文将深入探讨数据仓库与数据湖的概念与应用,介绍其在数据管理和分析中的作用,以及如何构建智能决策的桥梁。
|
8月前
|
数据采集 机器学习/深度学习 存储
数据仓库与数据湖:不同的数据管理方式
在当今数据驱动的时代,数据管理成为了企业发展的关键。数据仓库和数据湖是两种不同的数据管理方式。本文将介绍数据仓库和数据湖的概念及其应用,并分析其优缺点,帮助企业选择适合自身的数据管理方式。
|
7月前
|
存储 分布式计算 大数据
数据仓库与数据湖在大数据架构中的角色与应用
在大数据时代,数据仓库和数据湖分别以结构化数据管理和原始数据存储见长,共同助力企业数据分析。数据仓库通过ETL处理支持OLAP查询,适用于历史分析、BI报表和预测分析;而数据湖则存储多样化的原始数据,便于数据探索和实验。随着技术发展,湖仓一体成为趋势,融合两者的优点,如Delta Lake和Hudi,实现数据全生命周期管理。企业应根据自身需求选择合适的数据架构,以释放数据潜力。【6月更文挑战第12天】
279 5
|
8月前
|
存储 机器学习/深度学习 数据采集
【专栏】在数字化时代,数据仓库和数据湖成为企业管理数据的关键工具
【4月更文挑战第27天】在数字化时代,数据仓库和数据湖成为企业管理数据的关键工具。数据仓库是经过规范化处理的结构化数据集合,适合支持已知业务需求;而数据湖存储原始多类型数据,提供数据分析灵活性。数据仓库常用于企业决策、财务分析,而数据湖适用于大数据分析、机器学习和物联网数据处理。企业需根据自身需求选择合适的数据存储方式,以挖掘数据价值并提升竞争力。理解两者异同对企业的数字化转型至关重要。
155 2
|
5月前
|
存储 数据采集 数据挖掘
数据仓库VS数据湖:选择正确的数据存储解决方案
【8月更文挑战第23天】企业在选择数据存储解决方案时,应综合考虑业务需求、数据特性、技术实力及成本效益等多方面因素,以做出最符合自身发展的决策。
|
5月前
|
存储 机器学习/深度学习 数据采集
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
|
8月前
|
存储 机器学习/深度学习 数据挖掘
数据仓库与数据湖:解析数据驱动的未来
在数字化时代,数据成为企业决策的核心资源。本文将深入探讨数据仓库和数据湖的概念、特点以及应用场景,分析其在实现数据驱动决策过程中的重要性和优势,并展望数据驱动的未来发展趋势。
220 5
|
8月前
|
存储 数据采集 分布式计算
大规模数据处理:从数据湖到数据仓库
对于大型企业来说,海量的数据是一种巨大的财富,但如何高效地处理这些数据却是一个巨大的挑战。本文将介绍大规模数据处理的两种主流方式:数据湖和数据仓库,并探讨它们的优缺点以及如何选择适合企业的方案。
92 1
|
8月前
|
存储 大数据 BI
数据仓库、数据湖、湖仓一体,究竟有什么区别?
近几年大数据概念太多了,数据库和数据仓库还没搞清楚,就又出了数据湖,现在又说什么“湖仓一体”。乙方公司拼命造概念,甲方公司不管三七二十一,吭哧吭哧花钱搞数据建设。到头来发现,钱也花了,人力也投入了,但最基本的业务需求都解决不了。
|
8月前
|
存储 机器学习/深度学习 数据挖掘
探究数据仓库与数据湖的异同及应用场景
在数据分析与处理方面,数据仓库与数据湖是两种广泛运用的数据架构。本文将深入剖析数据仓库与数据湖的概念、特点、使用场景以及二者之间的区别和联系,帮助读者更好地了解这两种数据架构的优缺点。