tf.Graph().get_operation_by_name

简介:
get_operation_by_name(name) method of tensorflow.python.framework.ops.Graph instance
    Returns the `Operation` with the given `name`.
    
    This method may be called concurrently from multiple threads.
    
    Args:
      name: The name of the `Operation` to return.
    
    Returns:
      The `Operation` with the given `name`.
    
    Raises:
      TypeError: If `name` is not a string.
      KeyError: If `name` does not correspond to an operation in this graph.
目录
相关文章
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
2545 0
|
5月前
|
TensorFlow 算法框架/工具
【Tensorflow】解决A `Concatenate` layer should be called on a list of at least 2 inputs
在TensorFlow 2.0中,使用Concatenate函数时出现错误,可以通过替换为tf.concat 来解决。
48 4
|
5月前
|
TensorFlow API 算法框架/工具
【Tensorflow】解决Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Te
文章讨论了在使用Tensorflow 2.3时遇到的一个错误:"Inputs to eager execution function cannot be Keras symbolic tensors...",这个问题通常与Tensorflow的eager execution(急切执行)模式有关,提供了三种解决这个问题的方法。
55 1
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+keras】解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor
在使用TensorFlow 2.0和Keras训练生成对抗网络(GAN)时,遇到了“cuDNN launch failure”错误,特别是在调用self.generator.predict方法时出现,输入形状为([32,2,8,8])。此问题可能源于输入数据形状与模型期望的形状不匹配或cuDNN版本不兼容。解决方案包括设置GPU内存增长、检查模型定义和输入数据形状、以及确保TensorFlow和cuDNN版本兼容。
56 1
|
PyTorch 算法框架/工具
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
2255 0
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
|
8月前
|
机器学习/深度学习 人工智能 算法
B. Greg and Graph
B. Greg and Graph
|
机器学习/深度学习 自然语言处理 算法
Joint Information Extraction with Cross-Task and Cross-Instance High-Order Modeling 论文解读
先前的信息抽取(IE)工作通常独立地预测不同的任务和实例(例如,事件触发词、实体、角色、关系),而忽略了它们的相互作用,导致模型效率低下。
107 0
|
人工智能 编解码 自动驾驶
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOv7在5 FPS到160 FPS的范围内,在速度和精度方面都超过了所有已知的物体检测器,在GPU V100上以30 FPS或更高的速度在所有已知的实时物体检测器中具有最高的精度56.8% AP。
470 0
UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
761 0
成功解决Instructions for updating: Use `tf.global_variables_initializer` instead.
成功解决Instructions for updating: Use `tf.global_variables_initializer` instead.