tf.Graph().get_operation_by_name

简介:
get_operation_by_name(name) method of tensorflow.python.framework.ops.Graph instance
    Returns the `Operation` with the given `name`.
    
    This method may be called concurrently from multiple threads.
    
    Args:
      name: The name of the `Operation` to return.
    
    Returns:
      The `Operation` with the given `name`.
    
    Raises:
      TypeError: If `name` is not a string.
      KeyError: If `name` does not correspond to an operation in this graph.
目录
相关文章
|
PyTorch 算法框架/工具
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
2352 0
Pytorch中Trying to backward through the graph和one of the variables needed for gradient错误解决方案
|
7月前
|
TensorFlow 算法框架/工具
【Tensorflow】解决A `Concatenate` layer should be called on a list of at least 2 inputs
在TensorFlow 2.0中,使用Concatenate函数时出现错误,可以通过替换为tf.concat 来解决。
98 4
|
7月前
|
TensorFlow API 算法框架/工具
【Tensorflow】解决Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Te
文章讨论了在使用Tensorflow 2.3时遇到的一个错误:"Inputs to eager execution function cannot be Keras symbolic tensors...",这个问题通常与Tensorflow的eager execution(急切执行)模式有关,提供了三种解决这个问题的方法。
73 1
|
10月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
95 1
|
机器学习/深度学习 人工智能 自然语言处理
OneIE:A Joint Neural Model for Information Extraction with Global Features论文解读
大多数现有的用于信息抽取(IE)的联合神经网络模型使用局部任务特定的分类器来预测单个实例(例如,触发词,关系)的标签,而不管它们之间的交互。
229 0
|
存储 机器学习/深度学习 人工智能
PTPCG: Efficient Document-level Event Extraction via Pseudo-Trigger-aware Pruned Complete Graph论文解读
据我们所知,我们目前的方法是第一项研究在DEE中使用某些论元作为伪触发词的效果的工作,我们设计了一个指标来帮助自动选择一组伪触发词。此外,这种度量也可用于度量DEE中带标注触发词的质量。
151 1
|
机器学习/深度学习 移动开发 自然语言处理
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
当在整个文档中描述事件时,文档级事件抽取(DEE)是必不可少的。我们认为,句子级抽取器不适合DEE任务,其中事件论元总是分散在句子中
163 0
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
|
机器学习/深度学习 自然语言处理 算法
Joint Information Extraction with Cross-Task and Cross-Instance High-Order Modeling 论文解读
先前的信息抽取(IE)工作通常独立地预测不同的任务和实例(例如,事件触发词、实体、角色、关系),而忽略了它们的相互作用,导致模型效率低下。
118 0
|
自然语言处理 算法 知识图谱
DEGREE: A Data-Efficient Generation-Based Event Extraction Model论文解读
事件抽取需要专家进行高质量的人工标注,这通常很昂贵。因此,学习一个仅用少数标记示例就能训练的数据高效事件抽取模型已成为一个至关重要的挑战。
215 0
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
196 0
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification