LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

简介:

The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and exchanging datasets. 
An SSTable is a simple abstraction to efficiently store large numbers of key-value pairs while optimizing for high throughput, sequential read/write workloads.

Unfortunately, the SSTable name itself has also been overloaded by the industry to refer to services that go well beyond just the sorted table, which has only added unnecessary confusion to what is a very simple and a useful data structure on its own. Let's take a closer look under the hood of an SSTable and how LevelDB makes use of it.

 

SSTable: Sorted String Table

SSTable本身是个简单而有用的数据结构, 而往往由于工业界对于它的overload, 导致大家的误解 
它本身就像他的名字一样, 就是a set of sorted key-value pairs 
如下图左, 当文件比较大的时候, 也可以建立key:offset的index, 用于快速分段定位, 但这个是可选的.

 

这个结构和普通的key-value pairs的区别, 可以support range query和random r/w

image

A "Sorted String Table" then is exactly what it sounds like, it is a file which contains a set of arbitrary, sorted key-value pairs inside
Duplicate keys are fine, there is no need for "padding" for keys or values, and keys and values are arbitrary blobs. Read in the entire file sequentially and you have a sorted index. Optionally, if the file is very large, we can also prepend, or create a standalone key:offset index for fast access.

That's all an SSTable is: very simple, but also a very useful way to exchange large, sorted data segments.

 

SSTables and Log Structured Merge Trees

仅仅SSTable数据结构本身仍然无法support高效的range query和random r/w的场景 
还需要一整套的机制来完成从memory sort, flush to disk, compaction以及快速读取……这样的一个完成的机制和架构称为,"The Log-Structured Merge-Tree" (LSM Tree
名字很形象, 首先是基于log的, 不断产生SSTable结构的log文件, 并且是需要不断merge以提高效率的

下图很好的描绘了LSM Tree的结构和大部分操作

image_thumb[3][1] 










本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6408775.html,如需转载请自行联系原作者




相关文章
|
22天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
1月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
655 2
|
3月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
205 5
|
2月前
|
C# 开发工具 Windows
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
C# 获取Windows系统信息以及CPU、内存和磁盘使用情况
61 0
|
4月前
内存或磁盘不足,excel无法再次打开或保存任何文档
内存或磁盘不足,excel无法再次打开或保存任何文档
104 2
|
4月前
|
存储 缓存 Linux
在Linux中,内存怎么看?磁盘状态怎么看?
在Linux中,内存怎么看?磁盘状态怎么看?
|
4月前
|
存储 程序员 编译器
c++学习笔记08 内存分区、new和delete的用法
C++内存管理的学习笔记08,介绍了内存分区的概念,包括代码区、全局区、堆区和栈区,以及如何在堆区使用`new`和`delete`进行内存分配和释放。
52 0
|
5月前
|
安全 Java 开发者
探索Java内存模型:可见性、有序性和并发
在Java的并发编程领域中,内存模型扮演了至关重要的角色。本文旨在深入探讨Java内存模型的核心概念,包括可见性、有序性和它们对并发实践的影响。我们将通过具体示例和底层原理分析,揭示这些概念如何协同工作以确保跨线程操作的正确性,并指导开发者编写高效且线程安全的代码。
|
4月前
|
存储 NoSQL Java
Tair的发展问题之Tair对于不同存储介质(如内存和磁盘)的线程分配是如何处理的
Tair的发展问题之Tair对于不同存储介质(如内存和磁盘)的线程分配是如何处理的
|
5月前
|
设计模式 安全 Java
Java面试题:设计模式如单例模式、工厂模式、观察者模式等在多线程环境下线程安全问题,Java内存模型定义了线程如何与内存交互,包括原子性、可见性、有序性,并发框架提供了更高层次的并发任务处理能力
Java面试题:设计模式如单例模式、工厂模式、观察者模式等在多线程环境下线程安全问题,Java内存模型定义了线程如何与内存交互,包括原子性、可见性、有序性,并发框架提供了更高层次的并发任务处理能力
88 1