如何在Go语言中使用Redis连接池

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:

一、关于连接池

一个数据库服务器只拥有有限的资源,并且如果你没有充分使用这些资源,你可以通过使用更多的连接来提高吞吐量。一旦所有的资源都在使用,那么你就不 能通过增加更多的连接来提高吞吐量。事实上,吞吐量在连接负载较大时就开始下降了。通常可以通过限制与可用的资源相匹配的数据库连接的数量来提高延迟和吞 吐量。

如果不使用连接池,那么,每次传输数据,我们都需要进行创建连接,收发数据,关闭连接。在并发量不高的场景,基本上不会有什么问题,一旦并发量上去了,那么,一般就会遇到下面几个常见问题:

  • 性能普遍上不去

  • CPU 大量资源被系统消耗

  • 网络一旦抖动,会有大量 TIME_WAIT 产生,不得不定期重启服务或定期重启机器

  • 服务器工作不稳定,QPS 忽高忽低

要想解决这些问题,我们就要用到连接池了。连接池的思路很简单,在初始化时,创建一定数量的连接,先把所有长连接存起来,然后,谁需要使用,从这里取走,干完活立马放回来。 如果请求数超出连接池容量,那么就排队等待、退化成短连接或者直接丢弃掉。

二、使用连接池遇到的坑

最近在一个项目中,需要实现一个简单的 Web Server 提供 Redis 的 HTTP interface,提供 JSON 形式的返回结果。考虑用 Go 来实现。

首先,去看一下 Redis 官方推荐的 Go Redis driver。官方 Star 的项目有两个:Radix.v2 和 Redigo。经过简单的比较后,选择了更加轻量级和实现更加优雅的 Radix.v2。

Radix.v2 包是根据功能划分成一个个的 sub package,每一个 sub package 在一个独立的子目录中,结构非常清晰。我的项目中会用到的 sub package 有 redis 和 pool。

由于我想让这种被 fork 的进程最好简单点,做的事情单一一些,所以,在没有深入去看 Radix.v2 的 pool 的实现之前,我选择了自己实现一个 Redis pool。(这里,就不贴代码了。后来发现自己实现的 Redis pool 与 Radix.v2 实现的 Redis pool 的原理是一样的,都是基于 channel 实现的, 遇到的问题也是一样的。)

不过在测试过程中,发现了一个诡异的问题。在请求过程中经常会报 EOF 错误。而且是概率性出现,一会有问题,一会又好了。通过反复的测试,发现 bug 是有规律的,当程序空闲一会后,再进行连续请求,会发生3次失败,然后之后的请求都能成功,而我的连接池大小设置的是3。再进一步分析,程序空闲300秒 后,再请求就会失败,发现我的 Redis server 配置了 timeout 300,至此,问题就清楚了。是连接超时 Redis server 主动断开了连接。客户端这边从一个超时的连接请求就会得到 EOF 错误。

然后我看了一下 Radix.v2 的 pool 包的源码,发现这个库本身并没有检测坏的连接,并替换为新的连接的机制。也就是说我每次从连接池里面 Get 的连接有可能是坏的连接。所以,我当时临时的解决方案是通过增加失败后自动重试来解决了。不过,这样的处理方案,连接池的作用好像就没有了。技术债能早点 还的还是早点还上。

三、使用连接池的正确姿势

想到我们的 ngx_lua 项目里面也大量使用 redis 连接池,他们怎么没有遇到这个问题呢。只能去看看源码了。

经过抽象分离, ngx_lua 里面使用 redis 连接池部分的代码大致是这样的:


 
 
  1. server { 
  2.     location /pool { 
  3.         content_by_lua_block { 
  4.             local redis = require "resty.redis" 
  5.             local red = redis:new() 
  6.  
  7.             local ok, err = red:connect("127.0.0.1"6379
  8.             if not ok then 
  9.                 ngx.say("failed to connect: ", err) 
  10.                 return 
  11.             end 
  12.  
  13.             ok, err = red:set("hello""world"
  14.             if not ok then 
  15.                 return 
  16.             end 
  17.  
  18.             red:set_keepalive(10000100
  19.         } 
  20.     } 

发现有个 set_keepalive 的方法,查了一下官方文档,方法的原型是 syntax: ok, err = red:set_keepalive(max_idle_timeout, pool_size) 貌似 max_idle_timeout 这个参数,就是我们所缺少的东西,然后进一步跟踪源码,看看里面是怎么保证连接有效的。


 
 
  1. function _M.set_keepalive(self, ...) 
  2.     local sock = self.sock 
  3.     if not sock then 
  4.         return nil, "not initialized" 
  5.     end 
  6.  
  7.     if self.subscribed then 
  8.         return nil, "subscribed state" 
  9.     end 
  10.  
  11.     return sock:setkeepalive(...) 
  12. end 

至此,已经清楚了,使用了 tcp 的 keepalive 心跳机制。

于是,通过与 Radix.v2 的作者一些讨论,选择自己在 redis 这层使用心跳机制,来解决这个问题。

四、最后的解决方案

在创建连接池之后,起一个 goroutine,每隔一段 idleTime 发送一个 PING 到 Redis server。其中,idleTime 略小于 Redis server 的 timeout 配置。
连接池初始化部分代码如下:


 
 
  1. p, err := pool.New("tcp", u.Host, concurrency) 
  2. errHndlr(err) 
  3. go func() { 
  4.     for { 
  5.         p.Cmd("PING"
  6.         time.Sleep(idelTime * time.Second) 
  7.     } 
  8. }() 

使用 redis 传输数据部分代码如下:


 
 
  1. func redisDo(p *pool.Pool, cmd string, args ...interface{}) (reply *redis.Resp, err error) { 
  2.     reply = p.Cmd(cmd, args...) 
  3.     if err = reply.Err; err != nil { 
  4.         if err != io.EOF { 
  5.             Fatal.Println("redis", cmd, args, "err is", err) 
  6.         } 
  7.     } 
  8.  
  9.     return 

其中,Radix.v2 连接池内部进行了连接池内连接的获取和放回,代码如下:


 
 
  1. // Cmd automatically gets one client from the pool, executes the given command 
  2. // (returning its result), and puts the client back in the pool 
  3. func (p *Pool) Cmd(cmd string, args ...interface{}) *redis.Resp { 
  4.     c, err := p.Get() 
  5.     if err != nil { 
  6.         return redis.NewResp(err) 
  7.     } 
  8.     defer p.Put(c) 
  9.  
  10.     return c.Cmd(cmd, args...) 

这样,我们就有了 keepalive 的机制,不会出现 timeout 的连接了,从 redis 连接池里面取出的连接都是可用的连接了。看似简单的代码,却完美的解决了连接池里面超时连接的问题。同时,就算 Redis server 重启等情况,也能保证连接自动重连。


来源:51CTO

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
5天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
23 2
|
4天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
13 2
|
4天前
|
Go C++
go语言中的条件语句
【11月更文挑战第4天】
15 2
|
8天前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
84 58
|
7天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
4天前
|
Go
go语言中的 跳转语句
【11月更文挑战第4天】
12 4
|
4天前
|
JSON 安全 Go
Go语言中使用JWT鉴权、Token刷新完整示例,拿去直接用!
本文介绍了如何在 Go 语言中使用 Gin 框架实现 JWT 用户认证和安全保护。JWT(JSON Web Token)是一种轻量、高效的认证与授权解决方案,特别适合微服务架构。文章详细讲解了 JWT 的基本概念、结构以及如何在 Gin 中生成、解析和刷新 JWT。通过示例代码,展示了如何在实际项目中应用 JWT,确保用户身份验证和数据安全。完整代码可在 GitHub 仓库中查看。
17 1
|
8天前
|
Go 数据处理 API
Go语言在微服务架构中的应用与优势
本文摘要采用问答形式,以期提供更直接的信息获取方式。 Q1: 为什么选择Go语言进行微服务开发? A1: Go语言的并发模型、简洁的语法和高效的编译速度使其成为微服务架构的理想选择。 Q2: Go语言在微服务架构中有哪些优势? A2: 主要优势包括高性能、高并发处理能力、简洁的代码和强大的标准库。 Q3: 文章将如何展示Go语言在微服务中的应用? A3: 通过对比其他语言和展示Go语言在实际项目中的应用案例,来说明其在微服务架构中的优势。
|
8天前
|
Go 数据处理 调度
探索Go语言的并发模型:Goroutines与Channels的协同工作
在现代编程语言中,Go语言以其独特的并发模型脱颖而出。本文将深入探讨Go语言中的Goroutines和Channels,这两种机制如何协同工作以实现高效的并发处理。我们将通过实际代码示例,展示如何在Go程序中创建和管理Goroutines,以及如何使用Channels进行Goroutines之间的通信。此外,本文还将讨论在使用这些并发工具时可能遇到的常见问题及其解决方案,旨在为Go语言开发者提供一个全面的并发编程指南。
|
5天前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。