百度搜索:蓝易云【Java语言之float、double内存存储方式】

简介: 由于使用IEEE 754标准进行存储,float和double类型可以表示非常大或非常小的浮点数,并且具有一定的精度。然而,由于浮点数的特性,它们在进行精确计算时可能会存在舍入误差。在编写Java程序时,需要注意使

在Java语言中,float和double是用于表示浮点数的数据类型。它们的内存存储方式如下:

  1. float:

    • float类型占用32位(4字节)的内存空间。
    • 内存布局按照IEEE 754标准进行存储。
    • 32位的二进制数被分为三个部分:符号位(1位)、指数位(8位)和尾数位(23位)。
    • 符号位用于表示正负数,0表示正数,1表示负数。
    • 指数位用于表示浮点数的指数部分,可以表示的指数范围为-126至+127。
    • 尾数位用于表示浮点数的小数部分。
  2. double:

    • double类型占用64位(8字节)的内存空间。
    • 内存布局同样按照IEEE 754标准进行存储。
    • 64位的二进制数被分为三个部分:符号位(1位)、指数位(11位)和尾数位(52位)。
    • 符号位、指数位和尾数位的含义和float类型相同,只是位数略有不同。

由于使用IEEE 754标准进行存储,float和double类型可以表示非常大或非常小的浮点数,并且具有一定的精度。然而,由于浮点数的特性,它们在进行精确计算时可能会存在舍入误差。在编写Java程序时,需要注意使

目录
相关文章
|
4月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
449 3
|
5月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
3月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
108 4
|
3月前
|
存储 缓存 Java
【深入浅出】揭秘Java内存模型(JMM):并发编程的基石
本文深入解析Java内存模型(JMM),揭示synchronized与volatile的底层原理,剖析主内存与工作内存、可见性、有序性等核心概念,助你理解并发编程三大难题及Happens-Before、内存屏障等解决方案,掌握多线程编程基石。
|
4月前
|
缓存 监控 Kubernetes
Java虚拟机内存溢出(Java Heap Space)问题处理方案
综上所述, 解决Java Heap Space溢出需从多角度综合施策; 包括但不限于配置调整、代码审查与优化以及系统设计层面改进; 同样也不能忽视运行期监控与预警设置之重要性; 及早发现潜在风险点并采取相应补救手段至关重要.
642 17
|
5月前
|
存储 监控 算法
Java垃圾回收机制(GC)与内存模型
本文主要讲述JVM的内存模型和基本调优机制。
|
5月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
211 0
|
6月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
2003 0
|
6月前
|
存储 缓存 NoSQL
内存管理基础:数据结构的存储方式
数据结构在内存中的存储方式主要包括连续存储、链式存储、索引存储和散列存储。连续存储如数组,数据元素按顺序连续存放,访问速度快但扩展性差;链式存储如链表,通过指针连接分散的节点,便于插入删除但访问效率低;索引存储通过索引表提高查找效率,常用于数据库系统;散列存储如哈希表,通过哈希函数实现快速存取,但需处理冲突。不同场景下应根据访问模式、数据规模和操作频率选择合适的存储结构,甚至结合多种方式以达到最优性能。掌握这些存储机制是构建高效程序和理解高级数据结构的基础。
666 1