Chrome Console 中的 '$' 和Console Importer

简介: Chrome Console 中的 '$' 和Console Importer

$N

$0 对当前选中的 html 节点的引用

$1 对上一次选择的节点的引用

$2 是对在那之前选择的节点的引用

一直到 $4

$_ 对上次执行的结果的引用

$$$

$ = document.querySelector

$$ = document.querySelectorAll

$x

XPath 表达式选取 DOM 元素

$i

$i 引入npm包

需要安装chrome插件 Console Importer 下载地址:

https://www.crx4chrome.com/extensions/hgajpakhafplebkdljleajgbpdmplhie/

eg:

$i('moment')

moment().format('YYYY-MM-DD')
"2020-04-21"

// 或者
$i('https://cdn.bootcss.com/qs/6.9.3/qs.min.js')

Qs.stringify({name: 'Tom', age: 23})
"name=Tom&age=23"

参考

05 | console 中的 ‘$’

            </div>
目录
相关文章
|
2月前
|
监控 应用服务中间件 nginx
基于Zabbix的SLA监控体系构建与实践
本文由Zabbix社区专家褚凤彬分享,详解SLA在Zabbix中的应用。通过Trigger与Service联动,构建Web应用的多层级监控体系,并介绍SLA计算规则、维护期处理及升级注意事项,助力企业精准掌控服务可用性。
377 36
|
消息中间件 存储 Kafka
Flink---11、状态管理(按键分区状态(值状态、列表状态、Map状态、归约状态、聚合状态)算子状态(列表状态、广播状态))
Flink---11、状态管理(按键分区状态(值状态、列表状态、Map状态、归约状态、聚合状态)算子状态(列表状态、广播状态))
|
Java API 开发工具
如何用阿里云 oss 下载文件
阿里云对象存储服务(OSS)提供了多种方式下载文件,以下讲解下各种方式的下载方法
11186 2
|
2月前
|
人工智能 API 开发者
用Dify搭建自动化工作流,我每天节省了3小时
作为一名开发者,我曾深陷重复工作。直到用Dify搭建AI自动化工作流,每天节省3小时。本文分享如何通过可视化编排实现客服、文档、代码的智能自动化,附部署、优化与避坑实战经验。
用Dify搭建自动化工作流,我每天节省了3小时
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
342 5
Java 并发编程——volatile 关键字解析
|
机器学习/深度学习 算法 调度
AdEMAMix: 一种创新的神经网络优化器
9月发布的一篇论文中,Pagliardini等人提出了AdEMAMix,一种新的优化算法,旨在克服Adam及其变体(如AdamW)在利用长期梯度信息方面的局限性。通过结合两种不同衰减率的指数移动平均(EMA),AdEMAMix能够更有效地利用历史梯度信息。实验结果显示,AdEMAMix在语言建模和视觉任务中均显著优于AdamW,不仅能加速模型收敛,还能提高学习稳定性。尽管引入了额外计算步骤,但开销极小,展示了在大规模神经网络训练中的潜力。论文详细探讨了其核心思想、实验设置及未来研究方向。
396 8
AdEMAMix: 一种创新的神经网络优化器
|
存储 人工智能 物联网
LoRA大模型微调的利器
LoRA模型是小型的Stable Diffusion模型,它们对checkpoint模型进行微小的调整。它们的体积通常是检查点模型的10到100分之一。因为体积小,效果好,所以lora模型的使用程度比较高。
LoRA大模型微调的利器
|
机器学习/深度学习 数据采集 存储
【机器学习】K-近邻算法(KNN)全面解析
K-近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,属于监督学习范畴。它的工作原理简单直观:给定一个训练数据集,对新的输入实例,KNN算法通过计算其与训练集中每个实例的距离,找出距离最近的K个邻居,然后根据这些邻居的类别(对于分类任务)或值(对于回归任务)来预测新实例的类别或值。KNN因其简单高效和无需训练过程的特点,在众多领域中得到广泛应用,如模式识别、推荐系统、图像分类等。
1525 0
|
缓存 开发工具 git
git放弃本地修改:
git放弃本地修改操作
592 0
git放弃本地修改:
|
网络安全 网络虚拟化 数据安全/隐私保护
Cisco Packet Tracer模拟:ASA5505 IP Sec VPN实验
Cisco Packet Tracer模拟:ASA5505 IP Sec VPN实验
1278 0
Cisco Packet Tracer模拟:ASA5505 IP Sec VPN实验

热门文章

最新文章