面试必问系列:手动实现一个 HashMap|Java 刷题打卡

简介: 面试必问系列:手动实现一个 HashMap|Java 刷题打卡

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的706. 设计哈希映射


不使用任何内建的哈希表库设计一个哈希映射(HashMap)。


实现 MyHashMap 类:


  • MyHashMap() 用空映射初始化对象
  • void put(int key, int value) 向 HashMap 插入一个键值对 (key, value) 。如果 key 已经存在于映射中,则更新其对应的值 value 。
  • int get(int key) 返回特定的 key 所映射的 value ;如果映射中不包含 key 的映射,返回 -1 。
  • void remove(key) 如果映射中存在 key 的映射,则移除 key 和它所对应的 value 。

 

示例:


输入:
["MyHashMap", "put", "put", "get", "get", "put", "get", "remove", "get"]
[[], [1, 1], [2, 2], [1], [3], [2, 1], [2], [2], [2]]
输出:
[null, null, null, 1, -1, null, 1, null, -1]
解释:
MyHashMap myHashMap = new MyHashMap();
myHashMap.put(1, 1); // myHashMap 现在为 [[1,1]]
myHashMap.put(2, 2); // myHashMap 现在为 [[1,1], [2,2]]
myHashMap.get(1);    // 返回 1 ,myHashMap 现在为 [[1,1], [2,2]]
myHashMap.get(3);    // 返回 -1(未找到),myHashMap 现在为 [[1,1], [2,2]]
myHashMap.put(2, 1); // myHashMap 现在为 [[1,1], [2,1]](更新已有的值)
myHashMap.get(2);    // 返回 1 ,myHashMap 现在为 [[1,1], [2,1]]
myHashMap.remove(2); // 删除键为 2 的数据,myHashMap 现在为 [[1,1]]
myHashMap.get(2);    // 返回 -1(未找到),myHashMap 现在为 [[1,1]]
复制代码


提示:


  • 0 <= key, value <= 10^6106
  • 最多调用 10^4104 次 put、get 和 remove 方法

 

进阶:你能否不使用内置的 HashMap 库解决此问题?


简单数组解法



与昨天的 705. 设计哈希集合 不同。


我们不仅仅需要记录一个元素存在与否,还需要记录该元素对应的值是什么。


由于题目限定了数据范围 0 <= key, value <= 10^60<=key,value<=106,和 kv 的数据类型。


我们可以使用 int 类型的数组实现哈希表功能。


class MyHashMap {
    int INF = Integer.MAX_VALUE;
    int N = 1000009;
    int[] map = new int[N];
    public MyHashMap() {
        Arrays.fill(map, INF);
    }
    public void put(int key, int value) {
        map[key] = value;
    }
    public int get(int key) {
        return map[key] == INF ? -1 : map[key];
    }
    public void remove(int key) {
        map[key] = INF;
    }
}
复制代码


  • 时间复杂度:O(1)O(1)
  • 空间复杂度:O(1)O(1)


链表解法



705. 设计哈希集合 同理,我们可以利用「链表」来构建 Map,这也是工程上最简单的一种实现方式。


class MyHashMap {
    static class Node {
        int key, value;
        Node next;
        Node(int _key, int _value) {
            key = _key;
            value = _value;
        }
    }
    // 由于使用的是「链表」,这个值可以取得很小
    Node[] nodes = new Node[10009];
    public void put(int key, int value) {
        // 根据 key 获取哈希桶的位置
        int idx = getIndex(key);
        // 判断链表中是否已经存在
        Node loc = nodes[idx], tmp = loc;
        if (loc != null) {
            Node prev = null;
            while (tmp != null) {
                if (tmp.key == key) { 
                    tmp.value = value;
                    return;
                }
                prev = tmp;
                tmp = tmp.next;
            }
            tmp = prev;
        }
        Node node = new Node(key, value);
        // 头插法
        // node.next = loc;
        // nodes[idx] = node;
        // 尾插法 
        if (tmp != null) {
            tmp.next = node;
        } else {
            nodes[idx] = node;
        }
    }
    public void remove(int key) {
        int idx = getIndex(key);
        Node loc = nodes[idx];
        if (loc != null) {
            Node prev = null;
            while (loc != null) {
                if (loc.key == key) {
                    if (prev != null) {
                        prev.next = loc.next;
                    } else {
                        nodes[idx] = loc.next;
                    }
                    return;
                }
                prev = loc;
                loc = loc.next;
            }
        }
    }
    public int get(int key) {
        int idx = getIndex(key);
        Node loc = nodes[idx];
        if (loc != null) {
            while (loc != null) {
                if (loc.key == key) {
                    return loc.value;
                }
                loc = loc.next;
            }
        }
        return -1;
    }
    int getIndex(int key) {
        // 因为 nodes 的长度只有 10009,对应的十进制的 10011100011001(总长度为 32 位,其余高位都是 0)
        // 为了让 key 对应的 hash 高位也参与运算,这里对 hashCode 进行右移异或
        // 使得 hashCode 的高位随机性和低位随机性都能体现在低 16 位中
        int hash = Integer.hashCode(key);
        hash ^= (hash >>> 16);
        return hash % nodes.length;
    }
}
复制代码


  • 时间复杂度:由于没有扩容的逻辑,最坏情况下复杂度为 O(n)O(n),一般情况下复杂度为 O(1)O(1)
  • 空间复杂度:O(1)O(1)


开放寻址解法



除了使用「链表」来解决哈希冲突以外,还能使用「开放寻址法」来解决。


class MyHashMap {
    static class Node {
        int key, value;
        Node next;
        boolean isDeleted;
        Node(int _key, int _value) {
            key = _key;
            value = _value;
        }
    }
    // 冲突时的偏移量
    int OFFSET = 1;
    Node[] nodes = new Node[10009];
    public void put(int key, int value) {
        int idx = getIndex(key);
        Node node = nodes[idx];
        if (node != null) {
            node.value = value;
            node.isDeleted = false;
        } else {
            node = new Node(key, value);
            nodes[idx] = node;
        }
    }
    public void remove(int key) {
        Node node = nodes[getIndex(key)];
        if (node != null) node.isDeleted = true;
    }
    public int get(int key) {
        Node node = nodes[getIndex(key)];
        if (node == null) return -1;
        return node.isDeleted ? -1 : node.value;
    }
    // 当 map 中没有 key 的时候,getIndex 总是返回一个空位置
    // 当 map 中包含 key 的时候,getIndex 总是返回 key 所在的位置
    int getIndex(int key) {
        int hash = Integer.hashCode(key);
        hash ^= (hash >>> 16);
        int n = nodes.length;
        int idx = hash % n;
        while (nodes[idx] != null && nodes[idx].key != key) {
            hash += OFFSET;
            idx = hash % n;
        }
        return idx;
    }
}
复制代码


  • 时间复杂度:一般情况下复杂度为 O(1)O(1),极端情况下为 O(n)O(n)
  • 空间复杂度:O(1)O(1)


最后



这是我们「刷穿 LeetCode」系列文章的第 No.706 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
3月前
|
缓存 Java 关系型数据库
2025 年最新华为 Java 面试题及答案,全方位打造面试宝典
Java面试高频考点与实践指南(150字摘要) 本文系统梳理了Java面试核心考点,包括Java基础(数据类型、面向对象特性、常用类使用)、并发编程(线程机制、锁原理、并发容器)、JVM(内存模型、GC算法、类加载机制)、Spring框架(IoC/AOP、Bean生命周期、事务管理)、数据库(MySQL引擎、事务隔离、索引优化)及分布式(CAP理论、ID生成、Redis缓存)。同时提供华为级实战代码,涵盖Spring Cloud Alibaba微服务、Sentinel限流、Seata分布式事务,以及完整的D
165 1
|
2月前
|
缓存 Java API
Java 面试实操指南与最新技术结合的实战攻略
本指南涵盖Java 17+新特性、Spring Boot 3微服务、响应式编程、容器化部署与数据缓存实操,结合代码案例解析高频面试技术点,助你掌握最新Java技术栈,提升实战能力,轻松应对Java中高级岗位面试。
318 0
|
3月前
|
存储 安全 Java
2025 最新史上最全 Java 面试题独家整理带详细答案及解析
本文从Java基础、面向对象、多线程与并发等方面详细解析常见面试题及答案,并结合实际应用帮助理解。内容涵盖基本数据类型、自动装箱拆箱、String类区别,面向对象三大特性(封装、继承、多态),线程创建与安全问题解决方法,以及集合框架如ArrayList与LinkedList的对比和HashMap工作原理。适合准备面试或深入学习Java的开发者参考。附代码获取链接:[点此下载](https://pan.quark.cn/s/14fcf913bae6)。
958 48
|
3月前
|
算法 架构师 Java
Java 开发岗及 java 架构师百度校招历年经典面试题汇总
以下是百度校招Java岗位面试题精选摘要(150字): Java开发岗重点关注集合类、并发和系统设计。HashMap线程安全可通过Collections.synchronizedMap()或ConcurrentHashMap实现,后者采用分段锁提升并发性能。负载均衡算法包括轮询、加权轮询和最少连接数,一致性哈希可均匀分布请求。Redis持久化有RDB(快照恢复快)和AOF(日志更安全)两种方式。架构师岗涉及JMM内存模型、happens-before原则和无锁数据结构(基于CAS)。
95 5
|
3月前
|
Java API 微服务
2025 年 Java 校招面试全攻略:从面试心得看 Java 岗位求职技巧
《2025年Java校招最新技术要点与实操指南》 本文梳理了2025年Java校招的核心技术栈,并提供了可直接运行的代码实例。重点技术包括: Java 17+新特性(Record类、Sealed类等) Spring Boot 3+WebFlux响应式编程 微服务架构与Spring Cloud组件 Docker容器化部署 Redis缓存集成 OpenAI API调用 通过实际代码演示了如何应用这些技术,如Java 17的Record类简化POJO、WebFlux构建响应式API、Docker容器化部署。
125 5
|
3月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
168 6
|
3月前
|
安全 Java API
2025 年 Java 校招面试常见问题及详细答案汇总
本资料涵盖Java校招常见面试题,包括Java基础、并发编程、JVM、Spring框架、分布式与微服务等核心知识点,并提供详细解析与实操代码,助力2025校招备战。
157 1
|
3月前
|
算法 Java 微服务
2025 年 Java 面试宝典社招春招秋招实操全方位攻略
2025年Java面试宝典涵盖核心技术及最新趋势,分为四大板块:1. Java基础:深入数据类型、多态等特性,结合学生信息管理等实例;2. JVM核心:解析内存模型与GC算法,附多线程转账等场景应用;3. 高并发方案:详解synchronized与线程池配置,提供Web服务器优化案例;4. Spring生态:剖析IoC/AOP原理,演示微服务架构实现。特别新增Java 17+特性实操,包括Record类、密封接口等语法糖,整合Spring Boot 3、响应式编程及云原生技术,通过订单状态机、API网关配置。
221 2
|
3月前
|
NoSQL Java 微服务
2025 年最新 Java 面试从基础到微服务实战指南全解析
《Java面试实战指南:高并发与微服务架构解析》 本文针对Java开发者提供2025版面试技术要点,涵盖高并发电商系统设计、微服务架构实现及性能优化方案。核心内容包括:1)基于Spring Cloud和云原生技术的系统架构设计;2)JWT认证、Seata分布式事务等核心模块代码实现;3)数据库查询优化与高并发处理方案,响应时间从500ms优化至80ms;4)微服务调用可靠性保障方案。文章通过实战案例展现Java最新技术栈(Java 17/Spring Boot 3.2)的应用.
198 9
|
3月前
|
缓存 算法 NoSQL
校招 Java 面试高频常见知识点深度解析与实战案例详细分享
《2025校招Java面试核心指南》总结了Java技术栈的最新考点,涵盖基础语法、并发编程和云原生技术三大维度: 现代Java特性:重点解析Java 17密封类、Record类型及响应式Stream API,通过电商案例演示函数式数据处理 并发革命:对比传统线程池与Java 21虚拟线程,详解Reactor模式在秒杀系统中的应用及背压机制 云原生实践:提供Spring Boot容器化部署方案,分析Spring WebFlux响应式编程和Redis Cluster缓存策略。
79 1

热门文章

最新文章