Python 可视化神器--Plotly

简介: 学习Python是做数分析的最基础的一步,数据分析离不开数据可视化。Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。除此之外,它还支持在线编辑,以及多种语言 python、javascript、matlab、R等许多API。它在python中使用也非常简单,直接用pip install plotly 安装好即可使用。

学习Python是做数分析的最基础的一步,数据分析离不开数据可视化。Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。除此之外,它还支持在线编辑,以及多种语言 python、javascript、matlab、R等许多API。它在python中使用也非常简单,直接用pip install plotly 安装好即可使用。本文将结合 plotly 库在 jupyter notebook 中来进行图形绘制。

使用 Plotly 可以画出很多媲美Tableau的高质量图,如下图所示:

40.jpg41.jpg


折线点图

折现点图画图步骤如下:首先在 Pycharm 界面输入 jupyter notebook后进入网页编辑界面,新建一个文件,导入相应的包即可进行图形绘制:

# import pkg
from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#设置编辑模式
plotly.offline.init_notebook_mode(connected=True)
#制作折线图
N = 150
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+7
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-7
trace0 = go.Scatter(
    x = random_x,
    y = random_y0,
    mode = 'markers',
    name = 'markers'
)
trace1 = go.Scatter(
    x = random_x,
    y = random_y1,
    mode = 'lines+markers',
    name = 'lines+markers'
)
trace2 = go.Scatter(
    x = random_x,
    y = random_y2,
    mode = 'lines',
    name = 'lines'
)
data = [trace0,trace1,trace2]
py.iplot(data)

显示结果如下:

42.jpg


直方图

# 直方图
trace0 = go.Bar(
    x = ['Jan','Feb','Mar','Apr', 'May','Jun',
         'Jul','Aug','Sep','Oct','Nov','Dec'],
    y = [20,15,25,16,18,28,19,67,12,56,14,27],
    name = 'Primary Product',
    marker=dict(
        color = 'rgb(49,130,189)'
    )
)
trace1 = go.Bar(
    x = ['Jan','Feb','Mar','Apr', 'May','Jun',
         'Jul','Aug','Sep','Oct','Nov','Dec'],
    y = [29,14,32,14,16,19,25,14,10,12,82,16],
    name = 'Secondary Product',
    marker=dict(
        color = 'rgb(204,204,204)'
    )
)
data = [trace0,trace1]
py.iplot(data)

显示结果如下:


43.jpg

散点图

# 散点图
trace1 = go.Scatter(
     y = np.random.randn(700),
    mode = 'markers',
    marker = dict(
        size = 16,
        color = np.random.randn(800),
        colorscale = 'Viridis',
        showscale = True
    )
)
data = [trace1]
py.iplot(data)

显示结果如下:


44.jpg


总结

今天的文章主要学习可视化神器-plotpy 的相关操作,希望在平时的工作中有所应用。更多的内容详见 https://plotly.com/python/

目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
205 0
|
13天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
74 7
|
27天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
29天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
2月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
48 2
Python实用记录(三):通过netron可视化模型
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
326 0
|
2月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
140 0
下一篇
DataWorks