剑指 Offer 10- II. 青蛙跳台阶问题

简介: 题目一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:

0 <= n <= 100

我的答案

class Solution {
    int a=1,b=1;
    int res;
    public int numWays(int n) {
        if(n<0) return -1;
        else if(n==0) return 1;
        else if(n==1) return 1;
        else for(int i=1;i<n;i++){
            res = a+b;
            a=b;
            b=res%1000000007;
        }
        return res%1000000007;
    }
}

如果只有0级台阶,不跳也算一种跳法

如果只有1级台阶,那显然只有一种跳法

如果有2级台阶,那么就有2种跳法,一种是分2次跳。每次跳1级,另一种就是一次跳2级

如果台阶级数大于2,设为n的话,这时我们把n级台阶时的跳法看成n的函数f(n),记为,第一次跳的时候有2种不同的选择:一是第一次跳一级,此时跳法的数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1),二是第一次跳二级,此时跳法的数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2),因此n级台阶的不同跳法的总数为f(n)=f(n-1)+f(n-2),不难看出就是斐波那契数列

目录
相关文章
|
12天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1273 5
|
2天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
11天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1289 87
|
12天前
|
云栖大会
阿里云云栖大会2025年9月24日开启,免费申请大会门票,速度领取~
2025云栖大会将于9月24-26日举行,官网免费预约畅享票,审核后短信通知,持证件入场
1825 13