线性关系数据可视化
1. Implot()
示例1:
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #设置风格、尺度 sns.set_style('darkgrid') sns.set_context('paper') #基本用法 #加载数据 tips = sns.load_dataset('tips') sns.lmplot(x = 'total_bill', y = 'tip', hue = 'smoker', data = tips, palette='Set1', ci = 70, #误差值 size = 5,#图表大小 markers = ['+','o']#点样式 )
示例2:拆分多个表格
sns.lmplot(x = 'total_bill', y= 'tip', col = 'smoker', data = tips)
示例3:多图表1
sns.lmplot(x = 'size', y = 'total_bill', hue = 'day', col = 'day', data = tips, aspect = 0.6, #长宽比 #x_jitter = .30, #给x或者y轴随机增加噪音点 col_wrap=4, #每行的列数 )
示例4:多图表2
sns.lmplot(x = 'total_bill', y ='tip', row = 'sex', col = 'time', data = tips, size = 4) #行为sex字段,列为time字段 #x轴total_bill, y轴tip
网络异常,图片无法展示
|
示例5:非线性回归
sns.lmplot(x = 'total_bill', y = 'tip', data = tips, order = 4) #order是幂数