Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)

简介: Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)

1、密度图、核密度图分布可视化:distplot函数+kdeplot函数


distplot()函数:集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。其中,直方图表示通过沿数据范围形成分箱,然后绘制条以显示落入每个分箱的观测次数的数据分布图。


   fig, axes = plt.subplots(1,2,figsize=(10,6))

   sns.distplot(data_frame[cols[0]],             # 不写为x=data_frame[cols[0]],是因为这样可自动添加横坐标标签

#                  bins=10,                         # 自定义柱状宽度,不设置更好,会自动计算

#                  hist=True,

                kde = True, norm_hist = False,   # 柱状图是否按照密度来显示,如果为 False,显示计数,尝试测试-----------------

                rug = True,                      # 单变量的柱状图,hist、ked、rug:bool,是否显示箱柱状图/密度曲线/边际毛毯数据分布/阴影,尝试测试-----------------

#                 fit=norm,                       # fit 可结合scipy库在图像上做拟合,拟合标准正态分布

               vertical = False,                 # 是否水平显示,True  

               label='dis',                      # label 图例,

#                 axlabel=cols[0],                # axlabel x轴标注

               ax = axes[0],

                )

       sns.kdeplot(data_frame[cols[0]],

                   shade=True,                       # shade(颜色填充KDE曲线下方的区域)

                   bw=bw01,

                   label='kde_bw%.2f'%bw01,

   #                 axlabel=cols[0],                # label 图例,axlabel x轴标注

                   ax = axes[1],

                   )


image.png


2、箱型图、散点图组合可视化(仅第2变量必须为数值型)


   sns.boxplot(x=cols[0],y=cols[1],data=data_frame,

               hue=cols[2],                             # 该特征必须为类别型特征

               linewidth=2, width=0.8, fliersize=3,     # 线宽、箱之间的间隔比例,异常点大小

               whis = 1.5,                              # 设置IQR

               notch = True,                            # 设置是否以中值做凹槽,尝试测试-----------------

   #             order = ['Thur','Fri','Sat','Sun'],  

              )

   sns.swarmplot(x=cols[0],y=cols[1],data=data_frame,

#                   color ='k',size = 3,alpha = 0.8,

                 )


image.png


3、小提琴图、散点图组合可视化(仅第2变量必须为数值型)


   sns.violinplot(x=cols[0],y=cols[1],data=data_frame,

                  hue=cols[2],                       # 该特征必须为类别型特征

                  scale = 'area',  # 测度小提琴图的宽度:area-面积相同,count-按照样本数量决定宽度,width-宽度一样

                  gridsize = 50,   # 设置小提琴图边线的平滑度,越高越平滑

                  inner = 'box',   # 设置内部显示类型 → box、quartile、point、stick、None,尝试测试-----------------

#                     split=True,      # 设置是否拆分小提琴图,前提条件是第三特征为二类别属性,尝试测试-----------------

                  #bw = 0.8        # 控制拟合程度,一般可以不设置

              )

   sns.swarmplot(x=cols[0],y=cols[1],data=data_frame,

                  hue=cols[2],                       # 该特征必须为类别型特征

#                   color="w", alpha=.5,

                 )


image.png


















 


相关文章
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
289 0
|
2月前
|
存储 数据可视化 BI
Python可视化应用——学生成绩分布柱状图展示
本程序使用Python读取Excel中的学生成绩数据,统计各分数段人数,并通过Matplotlib库绘制柱状图展示成绩分布。同时计算最高分、最低分及平均分,实现成绩可视化分析。
140 0
|
20天前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
2月前
|
人工智能 Python
python基本数据类型简介
本文简要介绍了Python的基本数据类型,包括整型、浮点型、字符串、列表、字典和布尔类型,帮助读者对Python数据类型有初步了解。
|
2月前
|
存储 数据采集 数据可视化
Python自动化分析知网文献:爬取、存储与可视化
Python自动化分析知网文献:爬取、存储与可视化
|
3月前
|
数据采集 Web App开发 自然语言处理
利用Python构建今日头条搜索结果的可视化图表
利用Python构建今日头条搜索结果的可视化图表
|
4月前
|
人工智能 数据可视化 数据挖掘
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
144 5
|
4月前
|
数据管理 开发者 Python
揭秘Python的__init__.py:从入门到精通的包管理艺术
__init__.py是Python包管理中的核心文件,既是包的身份标识,也是模块化设计的关键。本文从其历史演进、核心功能(如初始化、模块曝光控制和延迟加载)、高级应用场景(如兼容性适配、类型提示和插件架构)到最佳实践与常见陷阱,全面解析了__init__.py的作用与使用技巧。通过合理设计,开发者可构建优雅高效的包结构,助力Python代码质量提升。
386 10
|
5月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
205 33

热门文章

最新文章

推荐镜像

更多