ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生

设计思路


1、定义数据集


contents={"name": ['Bob',        'LiSa',                     'Mary',                       'Alan'],

         "ID":   [1,              2,                            3,                            4],    # 输出 NaN

         "age":  [np.nan,        28,                           38 ,                          '' ],   # 输出

       "born": [pd.NaT,     pd.Timestamp("1990-01-01"),  pd.Timestamp("1980-01-01"),        ''],     # 输出 NaT

         "sex":  ['男',          '女',                        '女',                        '男',],   # 输出 None

         "hobbey":['打篮球',     '打羽毛球',                   '打乒乓球',                    '',],   # 输出

         "money":[200.0,                240.0,                   290.0,                     300.0],  # 输出

         "weight":[140.5,                120.8,                 169.4,                      155.6],  # 输出

         }


2、DFS设计


(1)、指定一个包含数据集中所有实体的字典

(2)、指定实体间如何关联:当两个实体有一对多关系时,我们称之为“one”实体,即“parent entity”。

(3)、运行深度特征合成:DFS的最小输入是一组实体、一组关系和计算特性的“target_entity”。DFS的输出是一个特征矩阵和相应的特征定义列表。

让我们首先为数据中的每个客户创建一个特性矩阵,那么现在有几十个新特性来描述客户的行为。

(4)、改变目标的实体:DFS如此强大的原因之一是它可以为我们的数据中的任何实体创建一个特征矩阵。例如,如果我们想为会话构建特性

(5)、理解特征输出:一般来说,Featuretools通过特性名称引用生成的特性。

为了让特性更容易理解,Featuretools提供了两个额外的工具,Featuretools .graph_feature()和Featuretools .describe_feature(),

来帮助解释什么是特性以及Featuretools生成特性的步骤。

(6)、特征谱系图

特征谱系图可视地遍历功能生成过程。从基本数据开始,它们一步一步地展示应用的原语和生成的中间特征,以创建最终特征。

(7)、特征描述:功能工具还可以自动生成功能的英文句子描述。特性描述有助于解释什么是特性,并且可以通过包含手动定义的自定义来进一步改进。

有关如何自定义自动生成的特性描述的详细信息,请参见生成特性描述。



输出结果


  name  ID  age       born sex hobbey  money  weight

0   Bob   1  NaN        NaT   男    打篮球  200.0   140.5

1  LiSa   2   28 1990-01-01   女   打羽毛球  240.0   120.8

2  Mary   3   38 1980-01-01   女   打乒乓球  290.0   169.4

3  Alan   4             NaT   男         300.0   155.6

-------------------------------------------

nums_df:----------------------------------

  name  ID   age  money  weight

0   Bob   1   NaN  200.0   140.5

1  LiSa   2  28.0  240.0   120.8

2  Mary   3  38.0  290.0   169.4

3  Alan   4   NaN  300.0   155.6

cats_df:----------------------------------

  ID hobbey sex        born

0   4    NaN   男         NaN

1   1    打篮球   男         NaN

2   2   打羽毛球   女  1990-01-01

---------------------------------DFS设计:-----------------------------------

feature_matrix_nums

      ID   age  money  weight cats.hobbey cats.sex  cats.COUNT(nums)  \

name                                                                  

Bob    1   NaN  200.0   140.5         打篮球        男               1.0  

LiSa   2  28.0  240.0   120.8        打羽毛球        女               1.0  

Mary   3  38.0  290.0   169.4         NaN      NaN               NaN  

     cats.MAX(nums.age)  cats.MAX(nums.money)  cats.MAX(nums.weight)  \

name                                                                    

Bob                  NaN                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.MEAN(nums.age)  cats.MEAN(nums.money)  cats.MEAN(nums.weight)  \

name                                                                      

Bob                   NaN                  200.0                   140.5  

LiSa                 28.0                  240.0                   120.8  

Mary                  NaN                    NaN                     NaN  

     cats.MIN(nums.age)  cats.MIN(nums.money)  cats.MIN(nums.weight)  \

name                                                                    

Bob                  NaN                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.SKEW(nums.age)  cats.SKEW(nums.money)  cats.SKEW(nums.weight)  \

name                                                                      

Bob                   NaN                    NaN                     NaN  

LiSa                  NaN                    NaN                     NaN  

Mary                  NaN                    NaN                     NaN  

     cats.STD(nums.age)  cats.STD(nums.money)  cats.STD(nums.weight)  \

name                                                                    

Bob                  NaN                   NaN                    NaN  

LiSa                 NaN                   NaN                    NaN  

Mary                 NaN                   NaN                    NaN  

     cats.SUM(nums.age)  cats.SUM(nums.money)  cats.SUM(nums.weight)  \

name                                                                    

Bob                  0.0                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.DAY(born)  cats.MONTH(born)  cats.WEEKDAY(born)  cats.YEAR(born)  

name                                                                        

Bob              NaN               NaN                 NaN              NaN  

LiSa             1.0               1.0                 0.0           1990.0  

Mary             NaN               NaN                 NaN              NaN  

features_defs_nums: 29 [<Feature: ID>, <Feature: age>, <Feature: money>, <Feature: weight>, <Feature: cats.hobbey>, <Feature: cats.sex>, <Feature: cats.COUNT(nums)>, <Feature: cats.MAX(nums.age)>, <Feature: cats.MAX(nums.money)>, <Feature: cats.MAX(nums.weight)>, <Feature: cats.MEAN(nums.age)>, <Feature: cats.MEAN(nums.money)>, <Feature: cats.MEAN(nums.weight)>, <Feature: cats.MIN(nums.age)>, <Feature: cats.MIN(nums.money)>, <Feature: cats.MIN(nums.weight)>, <Feature: cats.SKEW(nums.age)>, <Feature: cats.SKEW(nums.money)>, <Feature: cats.SKEW(nums.weight)>, <Feature: cats.STD(nums.age)>, <Feature: cats.STD(nums.money)>, <Feature: cats.STD(nums.weight)>, <Feature: cats.SUM(nums.age)>, <Feature: cats.SUM(nums.money)>, <Feature: cats.SUM(nums.weight)>, <Feature: cats.DAY(born)>, <Feature: cats.MONTH(born)>, <Feature: cats.WEEKDAY(born)>, <Feature: cats.YEAR(born)>]

feature_matrix_cats_df

   hobbey sex  COUNT(nums)  MAX(nums.age)  MAX(nums.money)  MAX(nums.weight)  \

ID                                                                            

4     NaN   男            1            NaN            300.0             155.6  

1     打篮球   男            1            NaN            200.0             140.5  

2    打羽毛球   女            1           28.0            240.0             120.8  

   MEAN(nums.age)  MEAN(nums.money)  MEAN(nums.weight)  MIN(nums.age)  \

ID                                                                      

4              NaN             300.0              155.6            NaN  

1              NaN             200.0              140.5            NaN  

2             28.0             240.0              120.8           28.0  

   MIN(nums.money)  MIN(nums.weight)  SKEW(nums.age)  SKEW(nums.money)  \

ID                                                                        

4             300.0             155.6             NaN               NaN  

1             200.0             140.5             NaN               NaN  

2             240.0             120.8             NaN               NaN  

   SKEW(nums.weight)  STD(nums.age)  STD(nums.money)  STD(nums.weight)  \

ID                                                                        

4                 NaN            NaN              NaN               NaN  

1                 NaN            NaN              NaN               NaN  

2                 NaN            NaN              NaN               NaN  

   SUM(nums.age)  SUM(nums.money)  SUM(nums.weight)  DAY(born)  MONTH(born)  \

ID                                                                            

4             0.0            300.0             155.6        NaN          NaN  

1             0.0            200.0             140.5        NaN          NaN  

2            28.0            240.0             120.8        1.0          1.0  

   WEEKDAY(born)  YEAR(born)  

ID                            

4             NaN         NaN  

1             NaN         NaN  

2             0.0      1990.0  

features_defs_cats_df: 25 [<Feature: hobbey>, <Feature: sex>, <Feature: COUNT(nums)>, <Feature: MAX(nums.age)>, <Feature: MAX(nums.money)>, <Feature: MAX(nums.weight)>, <Feature: MEAN(nums.age)>, <Feature: MEAN(nums.money)>, <Feature: MEAN(nums.weight)>, <Feature: MIN(nums.age)>, <Feature: MIN(nums.money)>, <Feature: MIN(nums.weight)>, <Feature: SKEW(nums.age)>, <Feature: SKEW(nums.money)>, <Feature: SKEW(nums.weight)>, <Feature: STD(nums.age)>, <Feature: STD(nums.money)>, <Feature: STD(nums.weight)>, <Feature: SUM(nums.age)>, <Feature: SUM(nums.money)>, <Feature: SUM(nums.weight)>, <Feature: DAY(born)>, <Feature: MONTH(born)>, <Feature: WEEKDAY(born)>, <Feature: YEAR(born)>]

<Feature: SUM(nums.age)>

The sum of the "age" of all instances of "nums" for each "ID" in "cats".



feature_matrix_cats_df.csv


features_defs_cats_df: 25

[<Feature: hobbey>, <Feature: sex>, <Feature: COUNT(nums)>, <Feature: MAX(nums.age)>, <Feature: MAX(nums.money)>, <Feature: MAX(nums.weight)>, <Feature: MEAN(nums.age)>, <Feature: MEAN(nums.money)>, <Feature: MEAN(nums.weight)>, <Feature: MIN(nums.age)>, <Feature: MIN(nums.money)>, <Feature: MIN(nums.weight)>, <Feature: SKEW(nums.age)>, <Feature: SKEW(nums.money)>, <Feature: SKEW(nums.weight)>, <Feature: STD(nums.age)>, <Feature: STD(nums.money)>, <Feature: STD(nums.weight)>, <Feature: SUM(nums.age)>, <Feature: SUM(nums.money)>, <Feature: SUM(nums.weight)>, <Feature: DAY(born)>, <Feature: MONTH(born)>, <Feature: WEEKDAY(born)>, <Feature: YEAR(born)>]


ID hobbey sex COUNT(nums) MAX(nums.age) MAX(nums.money) MAX(nums.weight) MEAN(nums.age) MEAN(nums.money) MEAN(nums.weight) MIN(nums.age) MIN(nums.money) MIN(nums.weight) SKEW(nums.age) SKEW(nums.money) SKEW(nums.weight) STD(nums.age) STD(nums.money) STD(nums.weight) SUM(nums.age) SUM(nums.money) SUM(nums.weight) DAY(born) MONTH(born) WEEKDAY(born) YEAR(born)

4   男 1   300 155.6   300 155.6   300 155.6             0 300 155.6        

1 打篮球 男 1   200 140.5   200 140.5   200 140.5             0 200 140.5        

2 打羽毛球 女 1 28 240 120.8 28 240 120.8 28 240 120.8             28 240 120.8 1 1 0 1990


ID hobbey sex COUNT(nums)            

4   男 1            

1 打篮球 男 1            

2 打羽毛球 女 1            

 MAX(nums.age) MAX(nums.money) MAX(nums.weight) MEAN(nums.age) MEAN(nums.money) MEAN(nums.weight) MIN(nums.age) MIN(nums.money) MIN(nums.weight)

   300 155.6   300 155.6   300 155.6

   200 140.5   200 140.5   200 140.5

 28 240 120.8 28 240 120.8 28 240 120.8

 SKEW(nums.age) SKEW(nums.money) SKEW(nums.weight) STD(nums.age) STD(nums.money) STD(nums.weight) SUM(nums.age) SUM(nums.money) SUM(nums.weight)

             0 300 155.6

             0 200 140.5

             28 240 120.8

 DAY(born) MONTH(born) WEEKDAY(born) YEAR(born)          

               

               

 1 1 0 1990          

字段解释:


<Feature: hobbey> : The "hobbey".

<Feature: sex> : The "sex".

<Feature: COUNT(nums)> : The number of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.age)> : The maximum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.money)> : The maximum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.weight)> : The maximum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.age)> : The average of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.money)> : The average of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.weight)> : The average of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.age)> : The minimum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.money)> : The minimum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.weight)> : The minimum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.age)> : The skewness of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.money)> : The skewness of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.weight)> : The skewness of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.age)> : The standard deviation of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.money)> : The standard deviation of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.weight)> : The standard deviation of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.age)> : The sum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.money)> : The sum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.weight)> : The sum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: DAY(born)> : The day of the month of the "born".

<Feature: MONTH(born)> : The month of the "born".

<Feature: WEEKDAY(born)> : The day of the week of the "born".

<Feature: YEAR(born)> : The year of the "born".



feature_matrix_nums.csv


features_defs_nums: 29

[<Feature: ID>, <Feature: age>, <Feature: money>, <Feature: weight>, <Feature: cats.hobbey>, <Feature: cats.sex>, <Feature: cats.COUNT(nums)>, <Feature: cats.MAX(nums.age)>, <Feature: cats.MAX(nums.money)>, <Feature: cats.MAX(nums.weight)>, <Feature: cats.MEAN(nums.age)>, <Feature: cats.MEAN(nums.money)>, <Feature: cats.MEAN(nums.weight)>, <Feature: cats.MIN(nums.age)>, <Feature: cats.MIN(nums.money)>, <Feature: cats.MIN(nums.weight)>, <Feature: cats.SKEW(nums.age)>, <Feature: cats.SKEW(nums.money)>, <Feature: cats.SKEW(nums.weight)>, <Feature: cats.STD(nums.age)>, <Feature: cats.STD(nums.money)>, <Feature: cats.STD(nums.weight)>, <Feature: cats.SUM(nums.age)>, <Feature: cats.SUM(nums.money)>, <Feature: cats.SUM(nums.weight)>, <Feature: cats.DAY(born)>, <Feature: cats.MONTH(born)>, <Feature: cats.WEEKDAY(born)>, <Feature: cats.YEAR(born)>]


name ID age money weight cats.hobbey cats.sex cats.COUNT(nums) cats.MAX(nums.age) cats.MAX(nums.money) cats.MAX(nums.weight) cats.MEAN(nums.age) cats.MEAN(nums.money) cats.MEAN(nums.weight) cats.MIN(nums.age) cats.MIN(nums.money) cats.MIN(nums.weight) cats.SKEW(nums.age) cats.SKEW(nums.money) cats.SKEW(nums.weight) cats.STD(nums.age) cats.STD(nums.money) cats.STD(nums.weight) cats.SUM(nums.age) cats.SUM(nums.money) cats.SUM(nums.weight) cats.DAY(born) cats.MONTH(born) cats.WEEKDAY(born) cats.YEAR(born)

Bob 1   200 140.5 打篮球 男 1   200 140.5   200 140.5   200 140.5             0 200 140.5        

LiSa 2 28 240 120.8 打羽毛球 女 1 28 240 120.8 28 240 120.8 28 240 120.8             28 240 120.8 1 1 0 1990

Mary 3 38 290 169.4                                                  

Alan 4   300 155.6   男 1   300 155.6   300 155.6   300 155.6             0 300 155.6        


name ID age money weight          

Bob 1   200 140.5          

LiSa 2 28 240 120.8          

Mary 3 38 290 169.4          

Alan 4   300 155.6          

 cats.hobbey cats.sex cats.COUNT(nums)            

 打篮球 男 1            

 打羽毛球 女 1            

               

   男 1            

 cats.MAX(nums.age) cats.MAX(nums.money) cats.MAX(nums.weight) cats.MEAN(nums.age) cats.MEAN(nums.money) cats.MEAN(nums.weight) cats.MIN(nums.age) cats.MIN(nums.money) cats.MIN(nums.weight)

   200 140.5   200 140.5   200 140.5

 28 240 120.8 28 240 120.8 28 240 120.8

               

   300 155.6   300 155.6   300 155.6

 cats.SKEW(nums.age) cats.SKEW(nums.money) cats.SKEW(nums.weight) cats.STD(nums.age) cats.STD(nums.money) cats.STD(nums.weight) cats.SUM(nums.age) cats.SUM(nums.money) cats.SUM(nums.weight)

             0 200 140.5

             28 240 120.8

               

             0 300 155.6

 cats.DAY(born) cats.MONTH(born) cats.WEEKDAY(born) cats.YEAR(born)          

               

 1 1 0 1990          

               

               


字段解释:


<Feature: ID> : The "ID".

<Feature: age> : The "age".

<Feature: money> : The "money".

<Feature: weight> : The "weight".

<Feature: cats.sex> : The "sex" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.hobbey> : The "hobbey" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.COUNT(nums)> : The number of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.age)> : The maximum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.money)> : The maximum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.weight)> : The maximum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.age)> : The average of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.money)> : The average of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.weight)> : The average of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.age)> : The minimum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.money)> : The minimum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.weight)> : The minimum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.age)> : The skewness of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.money)> : The skewness of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.weight)> : The skewness of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.age)> : The standard deviation of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.money)> : The standard deviation of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.weight)> : The standard deviation of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.age)> : The sum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.money)> : The sum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.weight)> : The sum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.DAY(born)> : The day of the month of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MONTH(born)> : The month of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.WEEKDAY(born)> : The day of the week of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.YEAR(born)> : The year of the "born" for the instance of "cats" associated with this instance of "nums".


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
【moment】moment时间前后一个月,小于当天 或15天内
【moment】moment时间前后一个月,小于当天 或15天内
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
586 4
QGS
|
NoSQL 网络协议 Redis
Redis7配置哨兵模式(一主二从三哨兵)
Redis7配置哨兵模式(一主二从三哨兵)
QGS
729 1
|
NoSQL 关系型数据库 MySQL
SpringBoot 集成 SpringSecurity + MySQL + JWT 附源码,废话不多直接盘
SpringBoot 集成 SpringSecurity + MySQL + JWT 附源码,废话不多直接盘
312 2
|
JavaScript
Nest.js 实战 (七):如何生成 SVG 图形验证码
这篇文章介绍了使用NestJS实现Session验证的图形验证码功能的具体步骤。首先,通过powershell代码安装依赖pnpmaddsvg-captcha。然后,在控制器中使用TypeScript代码引入相关依赖,创建一个图形验证码的接口,当请求该接口时,返回一张随机图片验证码。最后,进行了效果演示。
248 0
Nest.js 实战 (七):如何生成 SVG 图形验证码
|
Java 关系型数据库 数据库连接
Mybatis实现增删改查
本文介绍了Mybatis实现增删改查的步骤。首先,需在项目lib目录下添加Mybatis核心及依赖jar包,包括MySQL驱动。接着配置mybatis.xml文件,包括数据库连接信息、日志设置和映射文件。接着创建数据库并设计实体类User。创建UserMapper接口及其XML文件,包含增删改查方法。再编写MybatisUtils工具类以获取SqlSession。最后通过示例展示了添加、修改、查询和删除操作的代码实现。
224 1
|
存储 人工智能 自然语言处理
打造专业高效的AI客服:从基础准备到深度训练的全面指南
【7月更文第14天】在数字化转型的浪潮中,人工智能客服(AI Customer Service)已成为提升企业服务质量和效率的关键。一个训练有素的AI客服不仅能提供24/7不间断服务,还能精准理解客户需求,有效提升客户满意度。本文将深入探讨如何构建这样一个系统,包括必备的硬性条件、训练流程及成本考量,辅以实际代码示例,为您的企业开启智能客服新时代。
3051 1
|
Ubuntu 网络协议 Linux
在Linux中,如何检查和配置IP地址?
在Linux中,如何检查和配置IP地址?
|
存储 Kubernetes Java
在k8S中,容器内日志是怎么采集的?
在k8S中,容器内日志是怎么采集的?
|
弹性计算 固态存储 大数据
阿里云服务器租用一年多少钱?2024年最新版阿里云服务器租用价格表
阿里云服务器价格亲民,2024年最新优惠中,轻量应用服务器2核2G3M带宽仅82元/年,折合6.8元/月;ECS经济型e实例2核2G3M带宽99元/年,新老用户同享;2核4G5M带宽ECS u1实例199元/年。此外,4核16G10M带宽服务器70元/月起,8核32G10M带宽160元/月起。另有GPU服务器优惠,如gn6v最高配置月费4685.20元。系统盘提供高效云盘、SSD云盘和ESSD云盘等多种选择。续费优惠方面,续费一年享7.5折,最长可达3折。详情请参考官方页面获取最准确的报价与活动信息。