DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

InceptionV4/Inception-ResNet算法的简介(论文介绍)


      InceptionV4和Inception-ResNet是谷歌研究人员,2016年,在Inception基础上进行的持续改进,又带来的两个新的版本。


Abstract

       Very deep convolutional networks have been central to  the largest advances in image recognition performance in  recent years. One example is the Inception architecture that  has been shown to achieve very good performance at relatively  low computational cost. Recently, the introduction  of residual connections in conjunction with a more traditional  architecture has yielded state-of-the-art performance  in the 2015 ILSVRC challenge; its performance was similar  to the latest generation Inception-v3 network. This raises  the question of whether there are any benefit in combining  the Inception architecture with residual connections. Here  we give clear empirical evidence that training with residual  connections accelerates the training of Inception networks  significantly. There is also some evidence of residual Inception  networks outperforming similarly expensive Inception  networks without residual connections by a thin margin. We  also present several new streamlined architectures for both  residual and non-residual Inception networks. These variations  improve the single-frame recognition performance on  the ILSVRC 2012 classification task significantly. We further  demonstrate how proper activation scaling stabilizes  the training of very wide residual Inception networks. With  an ensemble of three residual and one Inception-v4, we  achieve 3.08% top-5 error on the test set of the ImageNet  classification (CLS) challenge.

摘要

       非常深的卷积网络是近年来图像识别性能最大进步的核心。一个例子是Inception 架构,已经证明它在相对较低的计算成本下获得了非常好的性能。最近,在2015年的ILSVRC挑战中,引入residual 连接和更传统的架构带来了最先进的性能;其性能类似于最新一代的Inception-v3网络。这就提出了这样一个问题:在将Inception 架构与residual 连接结合起来时是否有任何好处。在这里,我们给出了清晰的经验证据,证明使用residual 连接的训练显著加速了初始网络的训练。还有一些证据表明,residual Inception 架构网络的表现优于同样昂贵的Inception 网络,而无需residual 连接。我们还为残差和非残差初始网络提供了几种新的简化架构。这些变化显著提高了ILSVRC 2012分类任务的单帧识别性能。我们进一步证明了适当的激活比例如何稳定非常广泛的residual Inception网络的训练。利用三个residual 和一个Inception-v4,的集合,我们在ImageNet分类(CLS)挑战的测试集上实现了3.08% top-5 错误。

Conclusions

      We have presented three new network architectures in detail:

• Inception-ResNet-v1: a hybrid Inception version that has a similar computational cost to Inception-v3 from [15].

• Inception-ResNet-v2: a costlier hybrid Inception version with significantly improved recognition performance.

• Inception-v4: a pure Inception variant without residual connections with roughly the same recognition performance as Inception-ResNet-v2.

      We studied how the introduction of residual connections leads to dramatically improved training speed for the Inception architecture. Also our latest models (with and without residual connections) outperform all our previous networks, just by virtue of the increased model size.

结论

      我们详细介绍了三种新的网络架构:

•Inception-ResNet-v1:一个混合的Inception版本,其计算成本与[15]版本的incep -v3相似。

•Inception-ResNet-v2:一个成本更高的混合Inception版本,显著提高了识别性能。

•Inception-v4:一个没有residual 连接的Inception,与Inception-ResNet-v2的识别性能大致相同。

      我们研究了如何引入residual 连接来显著提高Inception体系结构的训练速度。此外,我们最新的模型(包括和不包括residual 连接)的性能优于所有以前的网络,这仅仅是因为模型的大小有所增加。



1、实验结果


1、Single crop -single model experimental results

Reported on the non-blacklisted subset of the validation set of ILSVRC 2012

单crop -单模型试验结果:在ILSVRC 2012验证集的非黑名单子集上的报告


2、144 crops evaluations -single model experimental results

采用了144个crops比single效果更好。


Reported on the all 50000 images of the validation set of ILSVRC 2012

3、Ensemble results with 144 crops/dense evaluation.

集成学习效果更好!

For Inception-v4(+Residual), the ensemble consists of one pure Inception-v4 and three Inception-ResNet-v2 models and were evaluated both on the validation and on the test-set.

4、训练过程中的速度比较

其中红色的Inception-resnet-v2效果性能最好

(1)、Top-5 error evolution of all four models (single model, single crop)

模型尺寸较大时,性能改进。

尽管残差版本收敛得更快,但最终的准确性似乎主要取决于模型的大小。


(2)、Top-1 error evolution of all four models (single model, single crop)

This paints a similar picture as the top-5 evaluation.

其中红色的Inception-resnet-v2效果性能最好



论文

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi.

Inception-v4, Inception-ResNetand the Impact of Residual Connections on Learning, 2016

https://arxiv.org/abs/1602.07261



Inception-v4算法的架构详解


DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解之详细攻略



Inception-ResNet算法的架构详解


     Inception-ResNet网络: 改进的Inception模块和残差连接的结合。引入residual connection直连,把Inception和ResNet结合起来,让网络又宽又深。


DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解之详细攻略




InceptionV4/Inception-ResNet算法的案例应用


后期更新……




相关文章
|
2月前
|
算法 关系型数据库 文件存储
ProxylessNAS:直接在目标任务和硬件上进行神经架构搜索——论文解读
ProxylessNAS是一种直接在目标任务和硬件上进行神经架构搜索的方法,有效降低了传统NAS的计算成本。通过路径二值化和两路径采样策略,减少内存占用并提升搜索效率。相比代理任务方法,ProxylessNAS在ImageNet等大规模任务中展现出更优性能,兼顾准确率与延迟,支持针对不同硬件(如GPU、CPU、移动端)定制高效网络架构。
298 126
ProxylessNAS:直接在目标任务和硬件上进行神经架构搜索——论文解读
|
2月前
|
机器学习/深度学习 算法 物联网
μNAS:面向微控制器的约束神经架构搜索——论文解读
μNAS是一种专为微控制器设计的神经架构搜索方法,旨在解决物联网设备中资源受限的挑战。通过多目标优化框架,μNAS能够在有限的内存和计算能力下,自动搜索出高效的神经网络结构。该方法结合了老化进化算法与贝叶斯优化,并引入结构化剪枝技术,实现模型压缩。实验表明,μNAS在多个数据集上均取得了优异的精度与资源使用平衡,显著优于现有方法,为边缘计算设备的智能化提供了可行路径。
345 129
|
1月前
|
机器学习/深度学习 人工智能 缓存
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
本文提出面向边缘通用智能的多大语言模型(Multi-LLM)系统,通过协同架构、信任机制与动态编排,突破传统边缘AI的局限。融合合作、竞争与集成三种范式,结合模型压缩、分布式推理与上下文优化技术,实现高效、可靠、低延迟的边缘智能,推动复杂场景下的泛化与自主决策能力。
229 3
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
|
6月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
594 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
2月前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
161 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
2月前
|
机器学习/深度学习 人工智能 资源调度
MicroNAS:面向MCU的零样本神经架构搜索——论文阅读
MicroNAS是一种专为微控制器单元(MCU)设计的零样本神经架构搜索(NAS)框架,无需训练即可通过理论驱动的性能指标评估网络架构。相比传统NAS方法,其搜索效率提升高达1104倍,同时兼顾精度与硬件效率,适用于边缘计算场景。该框架结合神经切线核(NTK)条件数、线性区域计数及硬件感知延迟模型,实现快速、高效的架构搜索,为资源受限设备上的AI部署提供了新思路。
204 2
MicroNAS:面向MCU的零样本神经架构搜索——论文阅读
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
403 0
|
10月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
2213 11
架构学习:7种负载均衡算法策略
|
10月前
|
机器学习/深度学习 编解码 vr&ar
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
本文详细解读NeurIPS 2024最佳论文《视觉自回归建模:基于下一尺度预测的可扩展图像生成》。该研究提出VAR模型,通过多尺度token图和VAR Transformer结构,实现高效、高质量的图像生成,解决了传统自回归模型在二维结构信息、泛化能力和计算效率上的局限。实验表明,VAR在图像质量和速度上超越现有扩散模型,并展示出良好的扩展性和零样本泛化能力。未来研究将聚焦于文本引导生成和视频生成等方向。
1030 8
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构

热门文章

最新文章