成功解决 ValueError: feature_names mismatch training data did not have the following fields

简介: 成功解决 ValueError: feature_names mismatch training data did not have the following fields

解决问题


ValueError: feature_names mismatch: ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'black', 'lstat', 'crim_(0, 10_', 'crim_(10, 20_', 'crim_(20, 100_', 'zn_(-1, 5_', 'zn_(5, 18_', 'zn_(18, 20_', 'zn_(20, 40_', 'zn_(40, 80_', 'zn_(80, 86_', 'zn_(86, 100_', 'indus_(-1, 7_', 'indus_(7, 15_', 'indus_(15, 23_', 'indus_(23, 40_', 'nox_(0.0, 0.51_', 'nox_(0.51, 0.6_', 'nox_(0.6, 0.7_', 'nox_(0.7, 0.8_', 'nox_(0.8, 1.0_', 'rm_(0, 4_', 'rm_(4, 5_', 'rm_(5, 6_', 'rm_(6, 7_', 'rm_(7, 8_', 'rm_(8, 9_', 'age_(0, 60_', 'age_(60, 80_', 'age_(80, 100_', 'dis_(0, 2_', 'dis_(2, 6_', 'dis_(6, 14_', 'rad_(0, 5_', 'rad_(5, 10_', 'rad_(10, 25_', 'tax_(0, 200_', 'tax_(200, 400_', 'tax_(400, 500_', 'tax_(500, 800_', 'ptratio_(0, 14_', 'ptratio_(14, 20_', 'ptratio_(20, 23_', 'black_(0, 100_', 'black_(100, 350_', 'black_(350, 450_', 'lstat_(0, 5_', 'lstat_(5, 10_', 'lstat_(10, 20_', 'lstat_(20, 40_'] ['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f20', 'f21', 'f22', 'f23', 'f24', 'f25', 'f26', 'f27', 'f28', 'f29', 'f30', 'f31', 'f32', 'f33', 'f34', 'f35', 'f36', 'f37', 'f38', 'f39', 'f40', 'f41', 'f42', 'f43', 'f44', 'f45', 'f46', 'f47', 'f48', 'f49', 'f50', 'f51', 'f52', 'f53', 'f54', 'f55', 'f56', 'f57', 'f58', 'f59', 'f60']

expected rad_(0, 5_, indus_(-1, 7_, dis, rad_(10, 25_, tax, nox, dis_(0, 2_, tax_(400, 500_, zn_(5, 18_, lstat, nox_(0.7, 0.8_, rm_(5, 6_, ptratio_(14, 20_, indus_(7, 15_, age, zn_(-1, 5_, tax_(0, 200_, lstat_(5, 10_, lstat_(10, 20_, crim_(10, 20_, zn_(18, 20_, indus, nox_(0.6, 0.7_, rm_(6, 7_, dis_(2, 6_, tax_(500, 800_, indus_(15, 23_, crim_(0, 10_, zn_(20, 40_, rad_(5, 10_, ptratio, chas, rm_(0, 4_, black, age_(0, 60_, black_(350, 450_, crim, crim_(20, 100_, black_(0, 100_, rm, rm_(7, 8_, zn_(86, 100_, nox_(0.51, 0.6_, black_(100, 350_, ptratio_(0, 14_, lstat_(0, 5_, zn, zn_(80, 86_, rm_(8, 9_, nox_(0.8, 1.0_, dis_(6, 14_, tax_(200, 400_, rad, indus_(23, 40_, lstat_(20, 40_, age_(80, 100_, rm_(4, 5_, ptratio_(20, 23_, age_(60, 80_, zn_(40, 80_, nox_(0.0, 0.51_ in input data

training data did not have the following fields: f47, f18, f51, f33, f49, f9, f5, f32, f43, f26, f39, f55, f6, f57, f54, f44, f3, f14, f40, f48, f59, f24, f46, f17, f21, f31, f53, f2, f37, f42, f60, f8, f50, f58, f22, f45, f52, f20, f16, f36, f0, f10, f12, f19, f41, f11, f4, f27, f7, f34, f56, f1, f15, f38, f35, f13, f25, f29, f23, f30, f28





解决思路


值错误:feature_names不匹配:['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'black', 'lstat', 'crim_(0, 10_', 'crim_(10, 20_', 'crim_(20, 100_', 'zn_(-1, 5_', 'zn_(5, 18_', 'zn_(18, 20_', 'zn_(20, 40_', 'zn_(40, 80_', 'zn_(80, 86_', 'zn_(86, 100_', 'indus_(-1, 7_', 'indus_(7, 15_', 'indus_(15, 23_', 'indus_(23, 40_', 'nox_(0.0, 0.51_', 'nox_(0.51, 0.6_', 'nox_(0.6, 0.7_', 'nox_(0.7, 0.8_', 'nox_(0.8, 1.0_', 'rm_(0, 4_', 'rm_(4, 5_', 'rm_(5, 6_', 'rm_(6, 7_', 'rm_(7, 8_', 'rm_(8, 9_', 'age_(0, 60_', 'age_(60, 80_', 'age_(80, 100_', 'dis_(0, 2_', 'dis_(2, 6_', 'dis_(6, 14_', 'rad_(0, 5_', 'rad_(5, 10_', 'rad_(10, 25_', 'tax_(0, 200_', 'tax_(200, 400_', 'tax_(400, 500_', 'tax_(500, 800_', 'ptratio_(0, 14_', 'ptratio_(14, 20_', 'ptratio_(20, 23_', 'black_(0, 100_', 'black_(100, 350_', 'black_(350, 450_', 'lstat_(0, 5_', 'lstat_(5, 10_', 'lstat_(10, 20_', 'lstat_(20, 40_'] ['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f20', 'f21', 'f22', 'f23', 'f24', 'f25', 'f26', 'f27', 'f28', 'f29', 'f30', 'f31', 'f32', 'f33', 'f34', 'f35', 'f36', 'f37', 'f38', 'f39', 'f40', 'f41', 'f42', 'f43', 'f44', 'f45', 'f46', 'f47', 'f48', 'f49', 'f50', 'f51', 'f52', 'f53', 'f54', 'f55', 'f56', 'f57', 'f58', 'f59', 'f60']

training data 数据中没有以下字段:f47, f18, f51, f33, f49, f9, f5, f32, f43, f26, f39, f55, f6, f57, f54, f44, f3, f14, f40, f48, f59, f24, f46, f17, f21, f31, f53, f2, f37, f42, f60, f8, f50, f58, f22, f45, f52, f20, f16, f36, f0, f10, f12, f19, f41, f11, f4, f27, f7, f34, f56, f1, f15, f38, f35, f13, f25, f29, f23, f30, f28





解决方法


去掉 .values



boston_train_all = pd.read_csv('boston_train.csv')

boston_test = boston_train_all.values

LiR.predict(boston_test)

改为


boston_train_all = pd.read_csv('boston_train.csv')

boston_test = boston_train_all

LiR.predict(boston_test)

大功告成,哈哈!



相关文章
|
数据采集 分布式计算 并行计算
Dask与Pandas:无缝迁移至分布式数据框架
【8月更文第29天】Pandas 是 Python 社区中最受欢迎的数据分析库之一,它提供了高效且易于使用的数据结构,如 DataFrame 和 Series,以及大量的数据分析功能。然而,随着数据集规模的增大,单机上的 Pandas 开始显现出性能瓶颈。这时,Dask 就成为了一个很好的解决方案,它能够利用多核 CPU 和多台机器进行分布式计算,从而有效地处理大规模数据集。
757 1
|
Python
使用pysam操作VCF/BCF文件
使用pysam操作VCF/BCF文件 读取和写出 from pysam import VariantFile bcf_in = VariantFile("test_in.
2103 0
|
数据处理 Python Windows
python 如何读取GFS数据(.grib文件)
python 如何读取GFS数据(.grib文件)
python 如何读取GFS数据(.grib文件)
Servlet第四篇【request对象常用方法、应用】(一)
HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,开发人员通过这个对象的方法,可以获得客户这些信息。
227 0
Servlet第四篇【request对象常用方法、应用】(一)
|
6天前
|
云安全 人工智能 安全
AI被攻击怎么办?
阿里云提供 AI 全栈安全能力,其中对网络攻击的主动识别、智能阻断与快速响应构成其核心防线,依托原生安全防护为客户筑牢免疫屏障。
|
16天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
10天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
621 216