[leetcode/lintcode 题解]大厂算法面试高频题: 序列化和反序列N叉树

简介: [leetcode/lintcode 题解]大厂算法面试高频题: 序列化和反序列N叉树

描述
序列化是将一个数据结构或对象转换成比特流的过程,以便将其存储在文件或内存缓冲区中,或通过网络连接链路传输,以便稍后在同一或另一计算机环境中重建。
设计一个算法来序列化和反序列化一个N叉树。一棵N叉树是一棵有根树,其中每个节点的子节点不超过N个。序列化/反序列化算法的实现方式没有限制。您只需要确保N叉树可以序列化为字符串,并且该字符串可以反序列化为原始树结构。
例如,你可以序列化如下的3叉树

为 [1 [3[5 6] 2 4]]。你不一定要遵循这种格式,发挥创意,自己想出不同的方法。
图模型说明: https://www.lintcode.com/help/graph

image.png

在线评测地址:领扣题库官网

样例1
输入:{1,3,2,4#2#3,5,6#4#5#6}
输出:{1,3,2,4#2#3,5,6#4#5#6}
解释:如上图
样例2
输入:{1,3,2#2#3}
输出:{1,3,2#2#3}
解释:
          1
         / \
        3   2

解题思路
题解:基本是dfs分治即可解决,对输入的有向图从1节点开始遍历构造字符串,遍历儿子节点前加入左括号,完成后加入右括号。还原N叉树同样,遇到左括号开始搜索,读取数字存入,遇到右括号退出。

源代码

/**
 * Definition for Directed graph.
 * class DirectedGraphNode {
 *     int label;
 *     ArrayList<DirectedGraphNode> neighbors;
 *     DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); }
 * };
 */

public class Solution {
    public int pos = 1;
    public String dfs(DirectedGraphNode root) {
        String ans="";
        if(root == null)
            return ans;
        ans += "[";
        ans += String.valueOf(root.label);
        for(int i = 0; i < root.neighbors.size() ; i++) {
                ans += dfs(root.neighbors.get(i));
        }
        ans += "]";
        return ans;
        
    }
    public UndirectedGraphNode solve(String data) {
        int num = 0;
            while(data.charAt(pos) >= '0' && data.charAt(pos) <= '9') {
                num *= 10;
                num += data.charAt(pos) - '0';
                pos++;
            }
            UndirectedGraphNode node =  new UndirectedGraphNode(num);
            while(pos < data.length()) {
                if(data.charAt(pos) == '[' ) {
                    ++pos;
                    node.neighbors.add(solve(data));
                }
                else if(data.charAt(pos) == ']') {
                    pos++;
                    return node;
                }
            }
        return null;
    }
    public String serialize(ArrayList<DirectedGraphNode> nodes) {
        String ans="";
        if(nodes.size() == 0)
            return ans;
        return dfs(nodes.get(0));
    }
    public UndirectedGraphNode deserialize(String data) {
       if(data.length() == 0)
            return null;
        return solve(data);
    }
}

更多题解参考:九章官网solution

相关文章
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
278 4
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
160 2
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
310 4
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
1949 2
|
XML 存储 JSON
【IO面试题 六】、 除了Java自带的序列化之外,你还了解哪些序列化工具?
除了Java自带的序列化,常见的序列化工具还包括JSON(如jackson、gson、fastjson)、Protobuf、Thrift和Avro,各具特点,适用于不同的应用场景和性能需求。
【Java基础面试三十七】、说一说Java的异常机制
这篇文章介绍了Java异常机制的三个主要方面:异常处理(使用try、catch、finally语句)、抛出异常(使用throw和throws关键字)、以及异常跟踪栈(异常传播和程序终止时的栈信息输出)。

热门文章

最新文章