下载地址:下载地址:https://www.pan38.com/share.php?code=pvvmX 提取码:8888
一、系统架构设计
本系统采用Tacotron2+WaveRNN的端到端语音合成架构,包含以下模块:
声学特征提取模块(Mel频谱)
语音编码器(Speaker Encoder)
序列到序列合成模块
神经声码器
二、核心代码实现
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
import librosa
import soundfile as sf
class SpeakerEncoder(nn.Module):
 def init(self, input_dim=80, hidden_dim=256, num_layers=3):
 super(SpeakerEncoder, self).init()
 self.lstm = nn.LSTM(input_size=input_dim,
 hidden_size=hidden_dim,
 num_layers=num_layers,
 batch_first=True)
 self.proj = nn.Linear(hidden_dim, hidden_dim)
def forward(self, x):
    _, (hidden, _) = self.lstm(x)
    # 取最后一层隐藏状态
    embedding = self.proj(hidden[-1])
    return embedding
class Tacotron2(nn.Module):
 def init(self, vocab_size, embedding_dim=512):
 super(Tacotron2, self).init()
 self.embedding = nn.Embedding(vocab_size, embedding_dim)
 self.encoder = Encoder(embedding_dim)
 self.decoder = Decoder()
 self.postnet = PostNet()
def forward(self, text, mel_spec):
    # 文本编码
    embedded = self.embedding(text)
    encoder_outputs = self.encoder(embedded)
    # 结合说话人特征
    speaker_embed = speaker_encoder(mel_spec)
    encoder_outputs = encoder_outputs + speaker_embed.unsqueeze(1)
    # 频谱预测
    mel_outputs, alignments = self.decoder(encoder_outputs, mel_spec)
    mel_outputs_postnet = self.postnet(mel_outputs)
    return mel_outputs, mel_outputs_postnet, alignments
完整的训练流程(简化版)
def train(model, dataloader, optimizer, criterion, epochs=100):
 for epoch in range(epochs):
 for i, (text, mel, speaker_id) in enumerate(dataloader):
 optimizer.zero_grad()
        # 前向传播
        mel_pred, mel_postnet, _ = model(text, mel)
        # 计算损失
        loss = criterion(mel_pred, mel) + criterion(mel_postnet, mel)
        # 反向传播
        loss.backward()
        optimizer.step()
        if i % 100 == 0:
            print(f'Epoch: {epoch}, Batch: {i}, Loss: {loss.item()}')
声音克隆推理代码
def clone_voice(reference_audio, target_text):
# 提取参考音频特征
mel = extract_mel(reference_audio)
# 获取说话人嵌入
with torch.no_grad():
    speaker_embed = speaker_encoder(mel.unsqueeze(0))
# 文本编码
text_seq = text_to_sequence(target_text)
# 生成目标语音
mel_outputs, _, _ = tacotron2(text_seq, speaker_embed)
audio = waveglow.infer(mel_outputs)
return audio
三、关键技术实现细节
梅尔频谱提取:
def extract_mel(wav_path, sr=22050, n_fft=1024, hop_length=256, n_mels=80):
 y, sr = librosa.load(wav_path, sr=sr)
 S = librosa.feature.melspectrogram(
 y=y, sr=sr, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels)
 return torch.FloatTensor(S)
语音合成增强:
class PostNet(nn.Module):
 def init(self):
 super(PostNet, self).init()
 self.convolutions = nn.ModuleList([
 nn.Sequential(
 nn.Conv1d(80, 512, kernelsize=5, stride=1, padding=2),
 nn.BatchNorm1d(512),
 nn.Tanh(),
 nn.Dropout(0.5)
 ) for  in range(5)
 ])
def forward(self, x):
    for conv in self.convolutions:
        x = conv(x)
    return x
 
                            