LBA-ECO CD-06 亚马逊河流域河水碳组分同位素组成

简介: 该数据集(LBA-ECO CD-06)研究了1991年至2003年间亚马逊河流域60个地点的河水样品,包含溶解二氧化碳、无机碳(DIC)、有机碳(DOC)、细颗粒有机碳(FPOC)和粗颗粒有机碳(CPOC)等地球化学变量。数据涵盖DIC的14C与13C同位素组成及部分有机碳组分的14C测量值,分为四个CSV文件:采样点描述、地球化学属性均值、碳组分同位素值及平均值。此研究由Mayorga等人完成,数据来自橡树岭国家实验室分布式活动档案中心。

​LBA-ECO CD-06 Isotopic Composition of Carbon Fractions, Amazon Basin River Water

简介

该数据集包含 1991 年至 2003 年期间采集自亚马逊河流域 60 个地点的样品,包括标准地球化学变量:溶解二氧化碳、溶解无机碳(DIC)、溶解有机碳(DOC)、细颗粒有机碳(FPOC)和粗颗粒有机碳(CPOC)(Mayorga 等人,2005)。1991 年至 2003 年期间采集的样品测量了 DIC 的 14C 和 13C 同位素组成。1995 年至 1996 年期间采集的样品测量了有机碳组分的 14C 组成。

此数据集包含四个逗号分隔的数据文件。请注意,站点描述包含根据海拔 1,000 米以上流域面积百分比对每个站点按地形进行分类(Mayorga 等人,2005 年)。仅提供地球化学和碳分数结果的平均值。提供单独的 13C 和 14C 测量值以及平均值。

摘要

File #1: Sample_site_descriptions.csv

Column Heading Units/format Description
1 Site_category Sites are categorized based on proportion of their drainage area at elevations greater than 1,000 m
2 River Name of the river sampled
3 Site_name Name given to the sampling location. A few sites represent aggregated data from distinct sites in relative proximity.
4 Latitude decimal degrees Sampling location: latitude in decimal degrees (s)
5 Longitude decimal degrees Sampling location: longitude in decimal degrees (w)
6 Area km2 Site drainage area in square kilometers
7 Elev_site m Elevation at the sampling site in meters
8 Elev_basin_mean m Mean elevation of the site drainage area in meters
9 Elev_1000 % Percent of the site drainage area with elevation greater than 1,000 m

File #2: Geochemical_property_means.csv

Column Heading Units/format Description
1 Site_category Sites are categorized based on proportion of the site drainage area at elevations greater than 1,000 m
2 River Name of the river
3 Site_name Name given to the sampling location
4 Site_ID Each sampling site was assigned a unique numeric site ID
5 Temperature degrees C Mean water temperature reported in degrees Celsius
6 pH Mean river water pH
7 Alkalinity ueq per L Mean river water alkalinity either measured by Gran titration or estimated from temperature, DIC and pH; reported in microequivalents per liter (ueq per L)
8 FSS mg per L Concentration of fine suspended sediments reported in milligrams per liter of water
9 Perc_FPOC %wt Percent of fine suspended sediments composed of FPOC calculated as column 8 divided by column 13 and reported in percent
10 CO2 ppm Mean river water CO2 concentrations were either measured directly by headspace equilibration or estimated from temperature, pressure, pH, DIC, and alkalinity and reported in parts per million (ppm)
11 DIC umol per L Concentration of DIC reported in micromoles per liter (umol per L)
12 DOC mg C per L Concentration of DOC reported in milligrams C per liter (mg per L)
13 FPOC mg C per L Concentration of dissolved FPOC reported in milligrams C per liter (mg per L)
14 CPOC mg C per L Concentration of dissolved CPOC reported in milligramsC per liter (mg per L)

Missing data are represented by -9999
Mean geochemical properties were based on samples analyzed for carbon isotopes

File #3: C_fraction_delta_values_ind_samples.csv

Column Heading Units/format Description
1 Site_category Sites are categorized based on proportion of the site drainage area at elevations greater than 1,000 m
2 Site_ID Each sampling site was assigned a unique numeric site ID
3 Date YYYYMMDD Sample date (YYYYMMDD)
4 C_fraction Carbon fraction analyzed: DIC= dissolved inorganic carbon; CO2= carbon dioxide; DOC= dissolved organic carbon; FPOC= fine particulate organic carbon; CPOC= coarse particulate organic carbon: analyses for CO2 fraction were calculated; all others were measured directly
5 Delta_14C per mil Isotopic ratio of 14C to 12C: Delta (capital greek Delta) 14C data are reported as [[14C/12C ratio of the sample divided by 0.95 times the 14C/12C of the Oxalic Acid I standard, decay corrected to 1950] -1]1000 (as defined in Stuiver and Polach, 1977). A mass-dependent 13C correction has been applied
6 delta_13C per mil Isotopic ratio of 13C to 12C: delta (lowercase greek delta) 13C data are reported as [[13C/12C ratio of the sample divided by the 13C/12C of the PeeDee Belemnite standard] -1]
1000, or the deviation in parts per thousand of the 13C/12C ratio of the standard from the 13C/12C of the PDB standard

Missing data are represented by -9999

File #4: Mean_C_fraction_delta_values.csv

Column Heading Units/format Description
1 Site_category Sites are categorized based on proportion of their drainage area at elevations greater than 1,000 m
2 Carbon_fraction Identification of the carbon fraction ( CO2= carbon dioxide; DIC= dissolved inorganic carbon; DOC= dissolved organic carbon; FPOC= fine particulate organic carbon and CPOC= coarse particulate organic carbon)
3 N_samples Number of samples included in the calculation of the mean value
4 Delta_14C per mil Mean Delta 14C value for this carbon fraction and site category combination reported in parts per mil
5 Std_dev_D14C per mil Standard deviation of the mean Delta 14C value
6 delta_13C per mil Mean delta 13C value for this carbon fraction and site category combination reported in parts per mil
7 Std_dev_d13C per mil Standard deviation of the mean delta 13C value

missing data are represented by -9999

Site boundaries: (All latitude and longitude given in decimal degrees)

Site (Region) Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude Geodetic Datum
Rondonia, BrazilAmazon Basin (Amazon Basin) -74.572 -58.798 -1.817 -16.472 World Geodetic System, 1984 (WGS-84)

代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify

import pandas as pd
import leafmap

url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df

leafmap.nasa_data_login()

results, gdf = leafmap.nasa_data_search(
short_name="CD06_C_Isotopes_1120",
cloud_hosted=True,
bounding_box=(-74.57, -16.47, -58.8, -1.82),
temporal=("1991-08-12", "2003-01-26"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)

gdf.explore()

leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Mayorga, E., A.K. Aufdenkampe, C.A. Masiello, A.V. Krusche, J.I. Hedges, P.D. Quay, J.E. Richey, and T.A. Brown. 2012. LBA-ECO CD-06 Isotopic Composition of Carbon Fractions, Amazon Basin River Water. Data set. Available on-line [http://daac.ornl.gov ] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

相关文章
|
7月前
|
安全 API 开发者
HarmonyOS NEXT《ArkTS渲染控制完全指南:条件与循环渲染深度解析》
本文深入解析ArkTS条件渲染与循环渲染核心技术,涵盖`if/else`和`ForEach`的使用方法、动态更新机制及性能优化策略。通过20+实战案例,如数据增删、拖拽排序、点赞交互等,结合骨架屏加载、动画修复等企业级解决方案,助你突破渲染瓶颈,打造流畅UI体验。无论初学者还是进阶开发者,都能全面掌握ArkTS渲染控制精髓!适配HarmonyOS开发,助力教育科普与实践应用。
|
7月前
|
JSON 数据挖掘 API
京东商品评论API接口指南
京东商品评论API接口是京东开放平台提供的服务,支持开发者通过HTTP请求获取商品评论数据,适用于数据分析、情感分析等场景。接口采用GET或POST请求方式,需提供app_key、sku_id等参数,返回JSON格式的评论内容、时间、评分等信息。使用时需完成权限申请和签名计算,确保请求安全。示例代码展示了如何用Python的requests库调用该API并处理响应数据。
|
6月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
|
9月前
|
JavaScript 前端开发 应用服务中间件
菜鸟之路Day25一一前端工程化(二)
本文是《菜鸟之路Day25——前端工程化(二)》的详细记录,作者blue于2025年3月19日撰写。文章基于Vue框架,从零开始搭建前端页面并部署到Nginx服务器。主要内容包括:Element组件库快速入门、综合案例实现(布局设计、组件开发、Axios异步加载数据)、Vue路由配置及项目打包部署。通过实例演示了如何使用Element完成页面构建,配置路由实现页面切换,以及利用Nginx部署前端应用。适合初学者学习前端工程化的完整流程。
166 3
|
存储 算法 安全
RAID磁盘阵列技术
RAID磁盘阵列技术
527 4
|
SQL 缓存 分布式计算
C#如何处理上亿级数据的查询效率
C#如何处理上亿级数据的查询效率
330 2
|
SQL 存储 安全
什么是XSS攻击?什么是SQL注入攻击?什么是CSRF攻击?
理解并防范XSS、SQL注入和CSRF攻击是Web应用安全的基础。通过采用严格的输入验证、使用安全编码实践以及实现适当的身份验证和授权机制,可以有效防止这些常见的Web攻击,保障应用程序和用户的数据安全。
752 0
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的大学生创新创业平台项目管理子系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的大学生创新创业平台项目管理子系统的详细设计和实现(源码+lw+部署文档+讲解等)
237 0
|
应用服务中间件 Linux nginx
Nginx log 日志文件较大,按日期生成 实现日志的切割
Nginx log 日志文件较大,按日期生成 实现日志的切割
3745 0