在Python中实现二分匹配,可以使用网络流算法中的hopcroft-karp算法或经典的匈牙利算法。以下是一个基于匈牙利算法实现二分匹配的简要示例:
Python
1import numpy as np 2 3def hungarian_algorithm(cost_matrix): 4 def _make_cover_zero(matrix): 5 n = len(matrix) 6 for i in range(n): 7 minval = min(matrix[i]) 8 matrix[i] -= minval 9 return sum(minval for minval in matrix.flat) 10 11 def _augment_path(matrix, parents, u): 12 if parents[u] < 0: 13 return True 14 v = parents[u] 15 _augment_path(matrix, parents, parents[v]) 16 matrix[u][v], matrix[v][u] = matrix[v][u], matrix[u][v] 17 return False 18 19 n = len(cost_matrix) 20 matrix = cost_matrix.copy() 21 parents = [-1] * n 22 cover = 0 23 24 while True: 25 cover += _make_cover_zero(matrix) 26 queue = [i for i in range(n) if parents[i] < 0] 27 while queue: 28 u = queue.pop(0) 29 for v in range(n): 30 if matrix[u][v] == 0 and parents[v] < 0: 31 parents[v] = u 32 if _augment_path(matrix, parents, v): 33 return cover 34 if not any(parents[i] < 0 for i in range(n)): 35 break 36 37 return cover 38 39# 使用示例 40cost_matrix = np.array([[0, 5, 9], 41 [4, 0, 7], 42 [8, 2, 0]]) 43print(hungarian_algorithm(cost_matrix)) # 输出匹配的边数
请注意,上述代码仅提供了一个基础实现,并未完全优化,且未处理非二分图的情况。