用户态协议栈05—架构优化

简介: 用户态协议栈05—架构优化

优化部分

  • 添加了in和out两个环形缓冲区,收到数据包后添加到in队列;经过消费者线程处理之后,将需要发送的数据包添加到out队列。
  • 添加数据包解析线程(消费者线程),架构分层

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_timer.h>
#include <rte_ring.h>
#include <stdio.h>
#include <arpa/inet.h>
#include "arp.h"
#define ENABLE_SEND   1
#define ENABLE_ARP    1
#define ENABLE_ICMP   1
#define ENABLE_ARP_REPLY  1
#define ENABLE_DEBUG    1
#define ENABLE_TIMER    1
#define NUM_MBUFS (4096-1)
#define BURST_SIZE  32
#define RING_SIZE 1024
#define TIMER_RESOLUTION_CYCLES 120000000000ULL // 10ms * 1000 = 10s * 6
struct inout_ring {
  struct rte_ring* in;
  struct rte_ring* out;
};
static struct inout_ring* ioInst = NULL;
static struct inout_ring* inout_ring_instance(void) {
  if(ioInst == NULL) {
    ioInst = rte_malloc("inout ring", sizeof(struct inout_ring), 0);
    memset(ioInst, 0, sizeof(struct inout_ring));
  }
  return ioInst;
}
#if ENABLE_SEND
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 1, 184);
static uint32_t gSrcIp; //
static uint32_t gDstIp;
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
static uint16_t gSrcPort;
static uint16_t gDstPort;
#endif
#if ENABLE_ARP_REPLY
static uint8_t gDefaultArpMac[RTE_ETHER_ADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
#endif
int gDpdkPortId = 0;
static const struct rte_eth_conf port_conf_default = {
  .rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};
static void ng_init_port(struct rte_mempool *mbuf_pool) {
  uint16_t nb_sys_ports= rte_eth_dev_count_avail(); //
  if (nb_sys_ports == 0) {
    rte_exit(EXIT_FAILURE, "No Supported eth found\n");
  }
  struct rte_eth_dev_info dev_info;
  rte_eth_dev_info_get(gDpdkPortId, &dev_info); //
  
  const int num_rx_queues = 1;
  const int num_tx_queues = 1;
  struct rte_eth_conf port_conf = port_conf_default;
  rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);
  if (rte_eth_rx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId),NULL, mbuf_pool) < 0) {
    rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
  }
  
#if ENABLE_SEND
  struct rte_eth_txconf txq_conf = dev_info.default_txconf;
  txq_conf.offloads = port_conf.rxmode.offloads;
  if (rte_eth_tx_queue_setup(gDpdkPortId, 0 , 1024, 
    rte_eth_dev_socket_id(gDpdkPortId), &txq_conf) < 0) {
    
    rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
    
  }
#endif
  if (rte_eth_dev_start(gDpdkPortId) < 0 ) {
    rte_exit(EXIT_FAILURE, "Could not start\n");
  }
}
static int ng_encode_udp_pkt(uint8_t *msg, unsigned char *data, uint16_t total_len) {
  // encode 
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  
  // 2 iphdr 
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_UDP;
  ip->src_addr = gSrcIp;
  ip->dst_addr = gDstIp;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 udphdr 
  struct rte_udp_hdr *udp = (struct rte_udp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  udp->src_port = gSrcPort;
  udp->dst_port = gDstPort;
  uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
  udp->dgram_len = htons(udplen);
  rte_memcpy((uint8_t*)(udp+1), data, udplen);
  udp->dgram_cksum = 0;
  udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
  struct in_addr addr;
  addr.s_addr = gSrcIp;
  printf(" --> src: %s:%d, ", inet_ntoa(addr), ntohs(gSrcPort));
  addr.s_addr = gDstIp;
  printf("dst: %s:%d\n", inet_ntoa(addr), ntohs(gDstPort));
  return 0;
}
static struct rte_mbuf * ng_send_udp(struct rte_mempool *mbuf_pool, uint8_t *data, uint16_t length) {
  // mempool --> mbuf
  const unsigned total_len = length + 42;
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  mbuf->pkt_len = total_len;
  mbuf->data_len = total_len;
  uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
  ng_encode_udp_pkt(pktdata, data, total_len);
  return mbuf;
}
#if ENABLE_ARP
static int ng_encode_arp_pkt(uint8_t *msg, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  // 1 ethhdr
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  if (!strncmp((const char *)dst_mac, (const char *)gDefaultArpMac, RTE_ETHER_ADDR_LEN)) {
    uint8_t mac[RTE_ETHER_ADDR_LEN] = {0x0};
    rte_memcpy(eth->d_addr.addr_bytes, mac, RTE_ETHER_ADDR_LEN);
  } else {
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  }
  eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
  // 2 arp 
  struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth + 1);
  arp->arp_hardware = htons(1);
  arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
  arp->arp_hlen = RTE_ETHER_ADDR_LEN;
  arp->arp_plen = sizeof(uint32_t);
  arp->arp_opcode = htons(opcode);
  rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy( arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  arp->arp_data.arp_sip = sip;
  arp->arp_data.arp_tip = dip;
  
  return 0;
}
static struct rte_mbuf *ng_send_arp(struct rte_mempool *mbuf_pool, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_arp_pkt(pkt_data, opcode, dst_mac, sip, dip);
  return mbuf;
}
#endif
#if ENABLE_ICMP
static uint16_t ng_checksum(uint16_t *addr, int count) {
  register long sum = 0;
  while (count > 1) {
    sum += *(unsigned short*)addr++;
    count -= 2;
  
  }
  if (count > 0) {
    sum += *(unsigned char *)addr;
  }
  while (sum >> 16) {
    sum = (sum & 0xffff) + (sum >> 16);
  }
  return ~sum;
}
static int ng_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  // 1 ether
  struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
  rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
  rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
  eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
  // 2 ip
  struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
  ip->version_ihl = 0x45;
  ip->type_of_service = 0;
  ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
  ip->packet_id = 0;
  ip->fragment_offset = 0;
  ip->time_to_live = 64; // ttl = 64
  ip->next_proto_id = IPPROTO_ICMP;
  ip->src_addr = sip;
  ip->dst_addr = dip;
  
  ip->hdr_checksum = 0;
  ip->hdr_checksum = rte_ipv4_cksum(ip);
  // 3 icmp 
  struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
  icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
  icmp->icmp_code = 0;
  icmp->icmp_ident = id;
  icmp->icmp_seq_nb = seqnb;
  icmp->icmp_cksum = 0;
  icmp->icmp_cksum = ng_checksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
  return 0;
}
static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
    uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
  const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
  struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
  if (!mbuf) {
    rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
  }
  
  mbuf->pkt_len = total_length;
  mbuf->data_len = total_length;
  uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
  ng_encode_icmp_pkt(pkt_data, dst_mac, sip, dip, id, seqnb);
  return mbuf;
}
#endif
static void 
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
  char buf[RTE_ETHER_ADDR_FMT_SIZE];
  rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
  printf("%s%s", name, buf);
}
#if ENABLE_TIMER
static void
arp_request_timer_cb(__attribute__((unused)) struct rte_timer *tim,
     void *arg) {
  struct rte_mempool *mbuf_pool = (struct rte_mempool *)arg;
#if 0
  struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, ahdr->arp_data.arp_sha.addr_bytes, 
    ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
  rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
  rte_pktmbuf_free(arpbuf);
#endif
  
  int i = 0;
  for (i = 1;i <= 254;i ++) {
    uint32_t dstip = (gLocalIp & 0x00FFFFFF) | (0xFF000000 & (i << 24));
    struct in_addr addr;
    addr.s_addr = dstip;
    printf("arp ---> src: %s \n", inet_ntoa(addr));
    struct rte_mbuf *arpbuf = NULL;
    uint8_t *dstmac = ng_get_dst_macaddr(dstip);
    if (dstmac == NULL) {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, gLocalIp, dstip);
    
    } else {
      arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, dstmac, gLocalIp, dstip);
    }
    rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
    rte_pktmbuf_free(arpbuf);
    
  }
  
}
#endif
static int pkt_process(void* arg) {
  struct rte_mempool* mbuf_pool = (struct rte_mempool*)arg;
  struct inout_ring* ring = inout_ring_instance();
  while(1) {
    struct rte_mbuf *mbufs[BURST_SIZE];
    unsigned num_recvd = rte_ring_mc_dequeue_burst(ring->in, (void**)mbufs, BURST_SIZE, NULL);
    unsigned i = 0;
    for (i = 0;i < num_recvd;i++) {
      struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr*);
#if ENABLE_ARP
      if (ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
        struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i], 
          struct rte_arp_hdr *, sizeof(struct rte_ether_hdr));
        
        struct in_addr addr;
        addr.s_addr = ahdr->arp_data.arp_tip;
        printf("arp ---> src: %s ", inet_ntoa(addr));
        addr.s_addr = gLocalIp;
        printf(" local: %s \n", inet_ntoa(addr));
        if (ahdr->arp_data.arp_tip == gLocalIp) {
          if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) {
            printf("arp --> request\n");
            struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REPLY, ahdr->arp_data.arp_sha.addr_bytes, 
              ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
            //rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
            //rte_pktmbuf_free(arpbuf);
            rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);
          } else if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REPLY)) {
            printf("arp --> reply\n");
            struct arp_table *table = arp_table_instance();
            uint8_t *hwaddr = ng_get_dst_macaddr(ahdr->arp_data.arp_sip);
            if (hwaddr == NULL) {
              struct arp_entry *entry = rte_malloc("arp_entry",sizeof(struct arp_entry), 0);
              if (entry) {
                memset(entry, 0, sizeof(struct arp_entry));
                entry->ip = ahdr->arp_data.arp_sip;
                rte_memcpy(entry->hwaddr, ahdr->arp_data.arp_sha.addr_bytes, RTE_ETHER_ADDR_LEN);
                entry->type = 0;
                
                LL_ADD(entry, table->entries);
                table->count ++;
              }
            }
#if ENABLE_DEBUG
            struct arp_entry *iter;
            for (iter = table->entries; iter != NULL; iter = iter->next) {
          
              struct in_addr addr;
              addr.s_addr = iter->ip;
              print_ethaddr("arp table --> mac: ", (struct rte_ether_addr *)iter->hwaddr);
                
              printf(" ip: %s \n", inet_ntoa(addr));
          
            }
#endif
            rte_pktmbuf_free(mbufs[i]);
          }
        
          continue;
        } 
      }
#endif
      if (ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
        continue;
      }
      struct rte_ipv4_hdr *iphdr =  rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, 
        sizeof(struct rte_ether_hdr));
      
      if (iphdr->next_proto_id == IPPROTO_UDP) {
        struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);
#if ENABLE_SEND //
        rte_memcpy(gDstMac, ehdr->s_addr.addr_bytes, RTE_ETHER_ADDR_LEN);
        
        rte_memcpy(&gSrcIp, &iphdr->dst_addr, sizeof(uint32_t));
        rte_memcpy(&gDstIp, &iphdr->src_addr, sizeof(uint32_t));
        rte_memcpy(&gSrcPort, &udphdr->dst_port, sizeof(uint16_t));
        rte_memcpy(&gDstPort, &udphdr->src_port, sizeof(uint16_t));
#endif
        uint16_t length = ntohs(udphdr->dgram_len);
        *((char*)udphdr + length) = '\0';
        struct in_addr addr;
        addr.s_addr = iphdr->src_addr;
        printf("src: %s:%d, ", inet_ntoa(addr), ntohs(udphdr->src_port));
        addr.s_addr = iphdr->dst_addr;
        printf("dst: %s:%d, %s\n", inet_ntoa(addr), ntohs(udphdr->dst_port), 
          (char *)(udphdr+1));
#if ENABLE_SEND
        struct rte_mbuf *txbuf = ng_send_udp(mbuf_pool, (uint8_t *)(udphdr+1), length);
        //rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
        //rte_pktmbuf_free(txbuf);
        rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);
        
#endif
        rte_pktmbuf_free(mbufs[i]);
      }
#if ENABLE_ICMP
      if (iphdr->next_proto_id == IPPROTO_ICMP) {
        struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
        
        struct in_addr addr;
        addr.s_addr = iphdr->src_addr;
        printf("icmp ---> src: %s ", inet_ntoa(addr));
        
        if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
          addr.s_addr = iphdr->dst_addr;
          printf(" local: %s , type : %d\n", inet_ntoa(addr), icmphdr->icmp_type);
        
          struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
            iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
          //rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
          //rte_pktmbuf_free(txbuf);
          rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);
          rte_pktmbuf_free(mbufs[i]);
        }
        
      }
#endif
      
    }
  }
  return 0;
}
int main(int argc, char *argv[]) {
  if (rte_eal_init(argc, argv) < 0) {
    rte_exit(EXIT_FAILURE, "Error with EAL init\n");
    
  }
  struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUM_MBUFS,
    0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
  if (mbuf_pool == NULL) {
    rte_exit(EXIT_FAILURE, "Could not create mbuf pool\n");
  }
  ng_init_port(mbuf_pool);
  rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);
#if ENABLE_TIMER
  rte_timer_subsystem_init();
  struct rte_timer arp_timer;
  rte_timer_init(&arp_timer);
  uint64_t hz = rte_get_timer_hz();
  unsigned lcore_id = rte_lcore_id();
  rte_timer_reset(&arp_timer, hz, PERIODICAL, lcore_id, arp_request_timer_cb, mbuf_pool);
#endif
  struct inout_ring* ring = inout_ring_instance();
  if(ring == NULL)
    rte_exit(EXIT_FAILURE, "Could not init ioInst\n");
  if(ring->in == NULL)
    ring->in = rte_ring_create("ring in", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  if(ring->out == NULL)
    ring->out = rte_ring_create("ring out", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
  rte_eal_remote_launch(pkt_process, mbuf_pool, rte_get_next_lcore(lcore_id, 1, 0));
  while (1) {
    struct rte_mbuf* rx[BURST_SIZE];
    unsigned nb_recv = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);
    if(nb_recv > BURST_SIZE) {
      rte_exit(EXIT_FAILURE, "Error receiving from eth\n");
    }
    else {
      rte_ring_sp_enqueue_burst(ring->in, (void**)rx, nb_recv, NULL);
    }
    struct rte_mbuf* tx[BURST_SIZE];
    unsigned nb_send = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE, NULL);
    if(nb_send > 0) {
      rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_send);
      unsigned i = 0;
      for(i = 0; i < nb_send; i++) {
        rte_pktmbuf_free(tx[i]);
      }
    }
#if ENABLE_TIMER
    static uint64_t prev_tsc = 0, cur_tsc;
    uint64_t diff_tsc;
    cur_tsc = rte_rdtsc();
    diff_tsc = cur_tsc - prev_tsc;
    if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
      rte_timer_manage();
      prev_tsc = cur_tsc;
    }
#endif
  }
}


相关文章
|
5月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
5月前
|
算法 物联网 定位技术
蓝牙室内定位技术解决方案:核心技术架构与优化实践
本文探讨了蓝牙iBeacon与Lora结合的室内定位技术,分析其在复杂室内环境中的优势与挑战。通过三层架构实现高精度定位,并提出硬件、算法与部署优化方向,助力智慧仓储、医疗等场景智能化升级。
306 0
蓝牙室内定位技术解决方案:核心技术架构与优化实践
|
2月前
|
机器学习/深度学习 数据可视化 网络架构
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
PINNs训练难因多目标优化易失衡。通过设计硬约束网络架构,将初始与边界条件内嵌于模型输出,可自动满足约束,仅需优化方程残差,简化训练过程,提升稳定性与精度,适用于气候、生物医学等高要求仿真场景。
310 4
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
|
2月前
|
运维 Prometheus 监控
别再“亡羊补牢”了!——聊聊如何优化企业的IT运维监控架构
别再“亡羊补牢”了!——聊聊如何优化企业的IT运维监控架构
118 8
|
8月前
|
机器学习/深度学习 人工智能 文件存储
Llama Nemotron:英伟达开源基于Llama架构优化的推理模型,253B参数持平DeepSeek R1!
NVIDIA推出的Llama Nemotron系列推理模型,基于Llama架构优化,包含Nano/Super/Ultra三款,在数学推理、编程和工具调用等任务中展现卓越性能。
306 5
Llama Nemotron:英伟达开源基于Llama架构优化的推理模型,253B参数持平DeepSeek R1!
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
4月前
|
机器学习/深度学习 存储 人工智能
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
本文将深入分析这两种编码架构的技术原理、数学基础、实现流程以及各自的优势与局限性,并探讨混合架构的应用策略。
296 10
RAG系统文本检索优化:Cross-Encoder与Bi-Encoder架构技术对比与选择指南
|
8月前
|
数据采集 运维 Serverless
云函数采集架构:Serverless模式下的动态IP与冷启动优化
本文探讨了在Serverless架构中使用云函数进行网页数据采集的挑战与解决方案。针对动态IP、冷启动及目标网站反爬策略等问题,提出了动态代理IP、请求头优化、云函数预热及容错设计等方法。通过网易云音乐歌曲信息采集案例,展示了如何结合Python代码实现高效的数据抓取,包括搜索、歌词与评论的获取。此方案不仅解决了传统采集方式在Serverless环境下的局限,还提升了系统的稳定性和性能。
239 0
|
4月前
|
机器学习/深度学习 人工智能 算法