Java多线程实战-从零手搓一个简易线程池(三)线程工厂,核心线程与非核心线程逻辑实现

简介: Java多线程实战-从零手搓一个简易线程池(三)线程工厂,核心线程与非核心线程逻辑实现

1.前言

1.1.内容回顾

往期文章传送门:

Java多线程实战-从零手搓一个简易线程池(一)定义任务等待队列

Java多线程实战-从零手搓一个简易线程池(二)线程池与拒绝策略实现

在上一节我们实现了线程池内部的基本运转逻辑,池化了线程资源进行任务处理,细心的同学可以发现,我们上章没有划分核心线程与非核心线程的概念,在JDK官方的提供的线程池中,线程池中的线程从概念上分为核心线程和非核心线程,核心线程是线程池中长久存在的线程,默认不会被回收,而非核心线程在空闲时间超过设置的最大空闲时间时会被回收,当然,我们也可以通过设置一个属性来运行核心线程被回收。



1.2.本节任务

本章节的任务如下:

  1. 实现线程工厂
  2. 实现核心线程与非核心线程


2.实现思路

2.1 线程工厂实现思路


线程工厂是运用了工厂设计模式,可以帮助我们隐藏创建线程的一些细节。我们可以通过线程工厂在创建线程数时定义线程的一些属性,如线程名称、线程组等。实现线程工厂一般有以下步骤:


定义一个线程工厂接口或抽象类,提供创建新线程的方法。

实现该接口或继承该抽象类,重写创建线程的方法逻辑。

在线程池的构造函数中,传入自定义的线程工厂实例。

整体实现还是比较简单,主要就是要注意编码规范

2.2 核心线程与非核心线程实现思路

这里首先要清楚一个概念,JDK线程池源码中没有显式的区别核心线程和非核心线程,他只是线程池在处理线程池不同情况下的线程的一种概念。我们接下来从源码分析(JDK1.8)是如何实现核心线程和非核心线程的管理的。



JDK官方线程池中的runWorker方法作用是用来执行worker线程

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                // 线程执行任务流程,省流
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

同我们上节运行线程一样,他会通过while (task != null || (task = getTask()) != null)来重复获取任务,如果task == null,也就是没获取到,会进入到processWorkerExit函数中,线程会被回收。也就是说,只要getTask方法返回为null,就代表了当前线程需要回收,所以我们接下来重点查看getTask方法的源码:

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
 
        // 1.方法内部使用了一个无限循环for (;;),这意味着线程会一直尝试获取任务,直到成功获取到任务或者满足退出条件。
        for (;;) {
            // 2.获取到目前线程池的线程数,最大核心线程,最大总线程数等信息
            int c = ctl.get();
            int rs = runStateOf(c);
 
            // 3.如果线程池的运行状态至少为SHUTDOWN(在此状态以上的状态,都不会接受新任务了,所以我们直接返回null)
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }
 
            int wc = workerCountOf(c);//获取线程池当前线程数量
 
            // 4.根据当前线程数动态判断是否要回收
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
 
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
 
            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

getTask方法主要负责从workQueue队列中获取任务,如果获取到了就返回任务,如果没有获取到就返回null。他会根据线程池的当前状态,当前线程数,来动态的选择是否从workQueue中拿取任务,以及拿取操作是否是超时操作。这里的设计特别巧妙,建议阅读源码仔细体会


如果 当前线程数 > 最大核心线程数,我们就判定存在非核心线程,可以进行回收判断


如果 当前线程数 < 最大线程数,我们就判定不存在核心线程


所以核心线程和非核心线程他们都是一类线程,只是在线程池不同情况下划分的概念而已

3.代码实现

3.1.线程池工厂实现

3.1.1.线程工厂接口
/**
 * @author Luckysj @刘仕杰
 * @description 线程工厂接口
 * @create 2024/03/28 20:40:18
 */
public interface ThreadFactory {
    /**
    * @description
    * @param 
    * @return 创建的线程对象
    * @date 2024/03/28 21:01:35
    */
    Thread newThread(Runnable r);
}
3.1.2.默认线程工厂实现类

默认线程工厂实现类主要是设置新建线程的线程组,线程名前缀等等信息,更加规范,方便后续日志排查错误

/**
 * @author Luckysj @刘仕杰
 * @description 默认线程工厂,我们这里仿照源码写法,为每个线程分配线程组(默认会自动分配),并为每个线程组
 * @create 2024/03/28 21:27:10
 */
public class DefaultThreadFactory implements ThreadFactory{
    /** 原子序号类,我们可以通过该类为线程工厂来获取一个随机序号,主要是为了区分不同线程池实例*/
    private static final AtomicInteger poolNumber = new AtomicInteger(1);
    /** 线程组,每个线程都需要属于一个线程组(平常使用未指定线程组会默认分配)*/
    private final ThreadGroup group;
    /** 原子序号类,我们可以通过该类为每个线程来获取一个随机序号*/
    private static final AtomicInteger threadNumber = new AtomicInteger(1);
    /** 线程名前缀,以便于在日志、监控等场景下识别和管理线程。*/
    private final String namePrefix;
 
    public DefaultThreadFactory() {
        // 获取管理安全策略的类,通过这个类我们可以获取对应名称的线程组,SecurityManager 和 group 的存在是为了更好地控制线程的安全性和权限
        SecurityManager s = System.getSecurityManager();
        // 存在 SecurityManager实例,则通过 s.getThreadGroup() 获取一个受限制的线程组。
        // 如果不存在 SecurityManager 实例,则使用当前线程所在的线程组 Thread.currentThread().getThreadGroup()。
        this.group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
        // 生成前缀
        this.namePrefix = "pool-" + poolNumber.getAndIncrement() + "-thread-";
    }
 
    @Override
    public Thread newThread(Runnable r) {
        Thread thread = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
        // 将线程设置为用户线程
        if(thread.isDaemon()){
            thread.setDaemon(false);
        }
        // 为线程设置默认优先级
        if(thread.getPriority() != Thread.NORM_PRIORITY){
            thread.setPriority(Thread.NORM_PRIORITY);
        }
        return thread;
    }
}


3.1.3.使用线程工厂

在Worker工作线程构造函数中使用工厂创建线程

    class Worker implements Runnable{
        private Runnable firstTask;
 
        private Thread thread;
 
        public Worker(Runnable task) {
 
            this.firstTask = task;
            this.thread = threadFactory.newThread(this);
        }
        
        // 省略
    }


3.2核心线程与非核心线程逻辑

3.2.1.编写getTask方法

getTask方法会根据线程池情况动态从任务队列中获取任务

    /**
    * @description 从等待队列中获取任务
    * @return Runnable 待执行的任务,没有获取到会返回null
    * @date 2024/04/02 10:46:37
    */
public Runnable getTask(){
        //我们使用一个变量来记录上次循环获取任务是否超时
        boolean preIsTimeOut = false;
        // 内部使用一个while循环,线程会一直尝试获取任务,直到成功获取到任务或者满足退出条件
        while(true){
            // 获取线程池当前线程数量
            int wc = threadTotalNums.get();
            // 1.是否要进行核心线程回收操作,当allowCoreThreadTimeOut为true,或者当前线程池数大于核心线程数时,我们需要进行回收判断
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
 
            // 2.根据情况动态调整线程数,以下情况需要直接返回null(返回null就会回收线程):
            // (1)当前线程大于最大线程数(就是超过规定大小了),且任务队列为空且存在工作线程
            // (2)timed为true,上次任务超时了(preIsTimeOut = true),且任务队列为空且存在工作
            if ( (wc > maximumPoolSize || (timed && preIsTimeOut)) && (wc > 1 || workQueue.isEmpty()) ) {
                return null;
            }
 
            // 3.根据timed这个条件来选择是超时堵塞
            Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
            if (r != null)
                return r;
            // 获取任务超时了,将preIsTimeOut设为true,下次可以执行回收
            preIsTimeOut = true;
        }
    }


timed 变量决定了线程从等待队列中拿取任务的方式,如果当前线程数大于最大核心线程数,或者开启了允许核心线程回收(allowCoreThreadTimeOut = true),我们就超时拿取,这样如果拿取任务超时就会返回null,线程就会被回收

3.2.2.调整Worker工作线程的run方法

将原来直接从任务队列中获取任务改为通过getTask方法获取

 @Override
        public void run() {
            log.info("工作线程====》工作线程{}开始运行", Thread.currentThread());
 
            // 1。首先消费当前任务,消费完再去任务队列取,while循环实现线程复用
            while(firstTask != null || (firstTask = getTask()) != null){
                try {
                    firstTask.run();
                }catch (Exception e){
                    throw new RuntimeException(e);
                }finally {
                    // 执行完后清除任务
                    firstTask = null;
                }
            }
 
            // 2.跳出循环,说明取任务超过了最大等待时间,线程歇菜休息吧
            synchronized (workerSet){
                workerSet.remove(this);
                threadTotalNums.decrementAndGet(); //计数扣减
            }
            log.info("工作线程====》线程{}已被回收,当前线程数:{}", Thread.currentThread(), threadTotalNums.get());
 
        }


3.2.3.编写addWorker方法
/**
    * @description 添加工作线程
    * @param firstTask 线程第一次执行的任务
    * @param isCore 是否为核心线程
    * @return Boolean 线程是否添加成功
    * @date 2024/04/02 10:42:43
    */
    public Boolean addWorker(Runnable firstTask, Boolean isCore){
        if(firstTask == null) {
            throw new NullPointerException();
        }
        // TODO 1.我们在添加线程时,首先可以进行一些与线程池生命周期相关的校验,比如在一些状态下,不允许再添加任务
 
        // 2.根据当前线程池和isCore条件判断是否需要创建
        int wc = threadTotalNums.get();
        if (wc >= (isCore ? corePoolSize : maximumPoolSize))
            return false;
        // 3.创建线程,并添加到线程集合中
        Worker worker = new Worker(firstTask);
        Thread t = worker.thread;
        if(t != null){
            synchronized (workerSet){
                workerSet.add(worker);
                threadTotalNums.getAndIncrement();
            }
            t.start();
            return true;
        }
        return false;
    }
3.2.4.完善excute方法

流程如下:

.如果当前线程数小于核心线程,直接创建核心线程去运行

2.线程数大于核心线程,我们就将任务加入等待队列

3.队列满了,尝试创建非核心线程,如果失败就触发拒绝策略

public void execute(Runnable task){
        if(task == null){
            throw new NullPointerException("传递的Runnable任务为Null");
        }
        // 1.如果当前线程数小于核心线程,直接创建线程去运行
        if(threadTotalNums.get() < corePoolSize){
            if(addWorker(task, true)) return;
        }
 
        // 2.线程数大于核心线程,我们就将任务加入等待队列
        if(workQueue.offer(task)){
            return;
        }
        // 3.队列满了,尝试创建非核心线程,如果失败就触发拒绝策略
        else if(!addWorker(task, false)){
            reject(task);
        }
 
    }


4.测试

编写如下测试代码,我们会创建一个核心线程数为2,最大线程数为5,等待队列长度为5的线程池,并添加15个任务到线程池中,按照预期会有五个任务触发拒绝策略,在任务执行完成后只保留两个核心线程

@Slf4j
public class MainTest {
    public static void main(String[] args) {
 
        ThreadPool threadPool = new ThreadPool(new WorkQueue<>(5), 2, 5,5L, TimeUnit.SECONDS,
                (queue, task) -> {
                    log.info("拒绝策略====》拒绝策略触发,直接丢弃当前任务");
                }, new DefaultThreadFactory());
        threadPool.setAllowCoreThreadTimeOut(false); //不回收核心线程
        for (int i = 0; i < 15; i++) {
            threadPool.execute(() -> {
                System.out.println("执行任务------->当前执行线程为" + Thread.currentThread().toString());
                try {
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            });
        }
 
        // ExecutorService executorService = Executors.newFixedThreadPool(2);
 
    }
}


运行结果如下:

可以看到运行结果符合预期,任务也被正常消费

我们设置AllowCoreThreadTimeOut的属性为true,再次进行测试,

threadPool.setAllowCoreThreadTimeOut(true); //回收核心线程

结果输出:

可以看到,核心线程也会被回收,符合预期。

5.总结


在本章节中我们通过学习JDK线程池源码中的部分代码,实现了一个简易版带有核心线程与非核心线程处理逻辑的线程池,我们可以通过指定AllowCoreThreadTimeOut属性来设置是否允许核心线程的回收,默认只会回收非核心线程。线程池的官方源码还是写得相当巧妙的,阅读难度也不高,推荐小伙伴学习~

相关文章
|
2月前
|
安全 Java 开发者
告别NullPointerException:Java Optional实战指南
告别NullPointerException:Java Optional实战指南
261 119
|
3月前
|
存储 前端开发 Java
【JAVA】Java 项目实战之 Java Web 在线商城项目开发实战指南
本文介绍基于Java Web的在线商城技术方案与实现,涵盖三层架构设计、MySQL数据库建模及核心功能开发。通过Spring MVC + MyBatis + Thymeleaf实现商品展示、购物车等模块,提供完整代码示例,助力掌握Java Web项目实战技能。(238字)
387 0
|
4月前
|
Java API Maven
2025 Java 零基础到实战最新技术实操全攻略与学习指南
本教程涵盖Java从零基础到实战的全流程,基于2025年最新技术栈,包括JDK 21、IntelliJ IDEA 2025.1、Spring Boot 3.x、Maven 4及Docker容器化部署,帮助开发者快速掌握现代Java开发技能。
869 1
|
3月前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
455 100
|
4月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
2月前
|
设计模式 缓存 安全
【JUC】(6)带你了解共享模型之 享元和不可变 模型并初步带你了解并发工具 线程池Pool,文章内还有饥饿问题、设计模式之工作线程的解决于实现
JUC专栏第六篇,本文带你了解两个共享模型:享元和不可变 模型,并初步带你了解并发工具 线程池Pool,文章中还有解决饥饿问题、设计模式之工作线程的实现
177 2
|
3月前
|
人工智能 Java API
Java AI智能体实战:使用LangChain4j构建能使用工具的AI助手
随着AI技术的发展,AI智能体(Agent)能够通过使用工具来执行复杂任务,从而大幅扩展其能力边界。本文介绍如何在Java中使用LangChain4j框架构建一个能够使用外部工具的AI智能体。我们将通过一个具体示例——一个能获取天气信息和执行数学计算的AI助手,详细讲解如何定义工具、创建智能体并处理执行流程。本文包含完整的代码示例和架构说明,帮助Java开发者快速上手AI智能体的开发。
1139 8
|
3月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
539 12
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
算法 Java 开发者
Java流程控制:条件与循环结构实战
本文深入讲解编程中的流程控制结构,涵盖条件语句(if-else、switch)、循环结构(for、while、do-while)及循环控制关键字(break、continue)的使用技巧与实战案例,帮助开发者写出更清晰、高效的代码。