【AI大模型应用开发】1.2 Prompt Engineering(提示词工程)- 站在巨人的肩膀上,超实用!常用提示词整理

简介: 【AI大模型应用开发】1.2 Prompt Engineering(提示词工程)- 站在巨人的肩膀上,超实用!常用提示词整理

通过上两篇文章我们学习和实践了Prompt的书写要素、原则与技巧,以及了解了一些进阶的优化方法

本来今天是想收集一些网上比较好的Prompt提示词,来与大家共同学习下别人的书写方式,吸取别人的经验,对Prompt有个更深入的理解。

但是发现这有点不太好,直接copy别人的东西,附个链接有点枯燥,大家看起来也比较懵。并且网上专门收集Prompt的文档和网站也有很多,我就不在这里班门弄斧了。

对于想看各类Prompt最佳实践的,给大家推荐个地方,感觉已经整理的很系统了:https://waytoagi.feishu.cn/wiki/DsGRwMesSiLy8hk91gNcgwoinpe

后面我会不定时更新下我看过的觉得比较好的Prompt,与大家分享,自己也做下记录。

今天主要给大家分享几个比较好的高级提示词,也就是在一些通用场景下,加上这一句,可能会让你的Prompt效果翻倍。

高级提示词

参考:https://mp.weixin.qq.com/s/FCT2dkNr4Ms_pNRM0p35tw

1. 费曼学习法

指令:请借助费曼学习法,以简单的语言解释「特定概念」,并提供一个例子来说明它如何应用。

2. 番茄工作法

指令:结合番茄工作法,为我定制一份由浅入深地学习计划,此次学习的主题为[XX]。

3. 帕累托法则(28原则)

指令:筛选出[主题或技能]中最具挑战性的20%要点,以覆盖其80%的内容,并草拟一份专注于掌握这些要点的学习方案。

4. 艾宾浩斯遗忘曲线

指令:结合艾宾浩斯遗忘曲线的研究成果,为我量身打造一份学习计划,以便我能够对近期正在钻研的[知识/技能]有着更为持久的把握。

5. SQ3R方法

指令:我正在学习某个[知识/技能],接下来请结合SQ3R方法,整理成表格,以帮我快速掌握这个知识。

6. 主题交法

指令:创建一个学习计划,将[主题]中不同的主题或技能混合起来,帮助我更全面的理解。

7. GROW模型

指令:我最近正在学习[某个知识/技能],接下来请结合GROW模型,制定一个符合我当前情况的学习计划。

8. 双编码理论

指令:结合双编码理论,同时使用文字和视觉信息(如图表、图像)帮我快速学习、记忆[某个知识技能]。


从今天开始,持续学习,开始搞事情。踩坑不易,欢迎关注我,围观我!

本站文章一览:

有任何问题,我也是个小白,期待与志同道合的朋友一起讨论,共同进步!

相关文章
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
44 3
|
11天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
42 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
8天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
12天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
63 4
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
35 1
|
14天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
116 48
|
10天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
44 10
|
10天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。

热门文章

最新文章

下一篇
无影云桌面