使用python制作一个批量查询搜索排名的SEO免费工具1.0版

简介: 使用python制作一个批量查询搜索排名的SEO免费工具1.0版

搭建背景

最近工作中需要用上 Google SEO(搜索引擎优化),有了解过的朋友们应该都知道SEO必不可少的工作之一就是查询关键词的搜索排名。关键词少的时候可以一个一个去查没什么问题,但是到了后期,一个网站都有几百上千的关键词,你再去一个一个查,至少要花费数小时的时间。

虽然市面上有很多SEO免费或者收费工具,但免费的基本都不能批量查,我看到网上最多也就只能10个10个查询,而且查询速度很慢。收费的工具如Ahrefs、SEMrush等以月为单位收费最低也都要 99$/月,当然如果觉得价格合适也可以进行购买,毕竟这些工具的很多功能都很实用。今天我给大家分享的这个排名搜索工具基于实现,当然肯定是不需要花费任何费用,装上开发环境即可。

实现步骤

话不多说,上代码:

import requests
from bs4 import BeautifulSoup

首先我们导入requestsBeautifulSoup两个库,requests用于发送HTTP请求,BeautifulSoup用于解析HTML。

def get_google_rank(keyword, website):
    try:
        url = f"https://www.google.com/search?q={keyword}"
        headers = {'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Mobile Safari/537.36'}
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        search_results = soup.find_all('div', class_='g')
        for i, result in enumerate(search_results):
            link = result.find('a')['href']
            if website in link:
                return i + 1  # 返回排名(从1开始)
        return -1  # 如果未找到网站,返回-1
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None

上述代码定义了一个名为get_google_rank的函数,该函数接受两个参数:keyword(关键词)和website(网站域名)。函数的目标是获取指定关键词在谷歌搜索结果中的排名。

在函数内部,首先构建了一个URL,该URL使用指定的关键词进行谷歌搜索。然后设置了一个User-Agent头部,模拟一个浏览器的请求。使用requests.get方法发送HTTP请求,获取搜索结果页面的响应。response.raise_for_status()用于检查请求是否成功,如果返回的状态码不是200,会抛出一个异常。

接下来,使用BeautifulSoup库解析响应的HTML内容,创建一个BeautifulSoup对象,并使用html.parser解析器进行解析。然后通过find_all方法查找所有具有'class'属性为'g'的'div'元素,这些元素包含了搜索结果的信息。

接着使用enumerate函数遍历搜索结果列表,并使用result.find('a')['href']获取每个搜索结果中的链接。如果指定的网站域名出现在链接中,就返回当前的排名(从1开始计数)。

如果循环结束后未找到指定的网站域名,函数返回-1,表示未找到网站。

如果在请求过程中发生异常,会捕获requests.exceptions.RequestException异常,并打印错误消息,然后返回None

# 示例用法
keywords = ['摸鱼小游戏','是男人就下100层','游戏']
website = 'haiyong.site'
for keyword in keywords:
    rank = get_google_rank(keyword, website)
    if rank is not None:
        if rank == -1:
            print(f"{keyword}没有排名")
        else:
            print(f"{keyword}排名第{rank}")

最后是一个示例用法的代码。定义了一个包含多个关键词的列表keywords和一个指定的网站域名website

通过for循环遍历关键词列表,调用get_google_rank函数获取每个关键词在谷歌搜索结果中的排名。如果返回的排名不为None,则根据排名的值进行条件判断,如果排名为-1,打印关键词没有排名的消息,否则打印关键词的排名信息。

以上就是整段代码的含义和逻辑。该代码实现了获取指定关键词在谷歌搜索结果中的排名,并通过示例展示了如何使用这个函数。

完整代码

import requests
from bs4 import BeautifulSoup
def get_google_rank(keyword, website):
    try:
        url = f"https://www.google.com.hk/search?q={keyword}"
        headers = {'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Mobile Safari/537.36'}
        response = requests.get(url, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        search_results = soup.find_all('div', class_='g')
        for i, result in enumerate(search_results):
            link = result.find('a')['href']
            if website in link:
                return i + 1  # 返回排名(从1开始)
        return -1  # 如果未找到网站,返回-1
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None
# 示例用法
keywords = ['摸鱼小游戏','是男人就下100层','游戏']
website = 'haiyong.site'
for keyword in keywords:
    rank = get_google_rank(keyword, website)
    if rank is not None:
        if rank == -1:
            print(f"{keyword}没有排名")
        else:
            print(f"{keyword}排名第{rank}")

梯子有点问题,先放个必应上查询的截图吧。

image.png

image.png


目录
相关文章
|
3月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
3月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
3月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
3月前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
4月前
|
程序员 测试技术 开发者
Python装饰器:简化代码的强大工具
Python装饰器:简化代码的强大工具
225 92
|
3月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1022 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
3月前
|
机器学习/深度学习 编解码 Python
Python图片上采样工具 - RealESRGANer
Real-ESRGAN基于深度学习实现图像超分辨率放大,有效改善传统PIL缩放的模糊问题。支持多种模型版本,推荐使用魔搭社区提供的预训练模型,适用于将小图高质量放大至大图,放大倍率越低效果越佳。
277 3
|
3月前
|
Web App开发 缓存 监控
微店店铺商品搜索(item_search_shop)接口深度分析及 Python 实现
item_search_shop接口用于获取特定店铺的全部商品数据,支持批量获取商品列表、基础信息、价格、销量等,适用于竞品监控、商品归类及店铺分析等场景,助力全面了解店铺经营状况。

推荐镜像

更多