【动态规划】【记忆化搜索】C++算法:546移除盒子

简介: 【动态规划】【记忆化搜索】C++算法:546移除盒子

LeetCode546. 移除盒子

给出一些不同颜色的盒子 boxes ,盒子的颜色由不同的正数表示。

你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止。每一轮你可以移除具有相同颜色的连续 k 个盒子(k >= 1),这样一轮之后你将得到 k * k 个积分。

返回 你能获得的最大积分和 。

示例 1:

输入:boxes = [1,3,2,2,2,3,4,3,1]

输出:23

解释:

[1, 3, 2, 2, 2, 3, 4, 3, 1]

----> [1, 3, 3, 4, 3, 1] (33=9 分)
----> [1, 3, 3, 3, 1] (1
1=1 分)

----> [1, 1] (33=9 分)
----> [] (2
2=4 分)

示例 2:

输入:boxes = [1,1,1]

输出:9

示例 3:

输入:boxes = [1]

输出:1

提示:

1 <= boxes.length <= 100

1 <= boxes[i] <= 100

动态规划

动态规划的状态表示:

dp[l][r][k]表示消除以下子序列获得的最大得分。

boxes[0,l)已经消除或不会对消除此子序列有影响。

boxes[l,r]全部没有消除。

boxes(r,n)除k个boxes[r]外,全部消除。

思路

假定boxs[i1]、boxs[i2]、boxs[i3]、boxes[i4]相等,且不存在其它等于boxs[i4]的盒子。消除i4时有如下可能。

为了方便,用g(l,r)代替 dp[l+1][r-1][0] f(r,k)代替dp[0][r][k]

i4 f[i4-1][0]+(k+1) ^2 l ,i4,0
i3 i4 f[i3][1]+g(i3,i4) l ,i4,0 -->l,i3,1
i2 i4 f[i2][1]+g(i2,i4) l ,i4,0 ->l,i2,1
i1 i4 f[i1][1]+g(i1,i4) l ,i4,0 >l,i1,1
i1 i2 i4 f[i1][2]+g(i1,i2)+g{i2,i4) l ,i4,0 --> l,i2,1 -> l,i1->2
i1 i3 i4 f[i1][2]+g(i1,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i1->2
i2 i3 i4 f[i2][2]+g(i2,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i2->2
i1 i2 i3 i4 f[i1][3]+g(i1,i2)+g{i2,i3)++g{i3,i4) l ,i4,0 --> l,i3,1 ->l,i2->2–>l,i1,3

我们以i1 i2 i4 为例:

f[i4][0]可能等于 f[i2][1] + g[i2,i4]

f[i2][1]可能等于f[i1][2] + g[i1+i2]

==> f[i4][0] 可能等于 f[i1]i2] + g[i1][i2] + g[i2][i4]

** 结论** 枚举消除时,不用枚举所有一同消除的下标,只需要枚举前一个下标。这意味着转移方程的时间复杂度从O(2n)降为O(n)。

状态数为n3,故空间复杂度为O(n3),时间复杂度为:O(n4)。许多状态不可能同时存在,实际时间复杂度低得多。

动态规划分析

动态规划的转移方程表示:

所有盒子都会被消除,所以boxes[r]也是,枚举boxes[r]被消除的可能:

情况一:boxes[r]被消除时,r的下标最小(最左边)。转移方程为:(k+1)*(k+1) + dp[l][r-1][0]

情况二:boxes[r]被消除时,i的小标比r小,如果有多个i取最大值。转移方程为:dp[i+1][r+1][0] + dp[l][i][k+1]

动态规划的初始状态:

全部为0,表示未计算。

动态规划的填表顺序:

计算dp[0][n-1][0]需要的状态。

动态规划的返回值:

dp[0][n-1][0]

枚举了不可能的情况

比如: {1,2,1,1} 由于boxs[2]和boxs[3]之间没有其它数字,所以它们一定同时被消除。

假定boxs[i1]boxs[i2]=x,且i1+1i2。

假定一:i1和i2被两次消除。 不失一般性,假定i1先被消除。包括i1共k1个x被消除,包括i2共k2个x被消除。

假定二:假定i1和i2之间没数据。除不消i1外,其它操作及顺序和假定一相同,直到消除i2。则时消除k0+k1+k2个x。 k1个boxs[i1]左边可以有k0个可以一并消除。在假定1中,这个k0x无论是一次消除还是多次消除都小于等于k0k0。除了这些x外,其它完全一样。假定一<=k0k0+k1k2+k2k2 假定二:(k0+k1+k2)^2。显然假定一 <= 假定二

这k0个x可能在假定一中和更左边的结合,那假定二可能等待这些都消除了,再消除i2。

结论: 假定一不存在,但它一定不优于假定二,假定二存在,所以多枚举了假定一,不会带来错误结果。

代码

核心代码

class Solution {
public:
  int removeBoxes(vector<int>& boxes) {
    m_c = boxes.size();
    m_boxes = boxes;
    for (int i = 0; i < m_c; i++)
    {
      m_dp[i].assign(m_c, vector<int>(m_c));
    }
    return Cal(0,m_c-1,0);
  }
  int Cal(const int& l, const int& r, const int& k)
  {
    if (l > r)
    {
      return 0;
    }
    if (0 != m_dp[l][r][k])
    {
      return m_dp[l][r][k];
    }
    m_dp[l][r][k] = Cal(l, r - 1, 0) + (k + 1) * (k + 1);
    for (int i = l; i < r; i++)
    {
      if (m_boxes[i] == m_boxes[r])
      {
        m_dp[l][r][k] = max(m_dp[l][r][k], Cal(l, i, k + 1)+ Cal(i+1,r-1,0));
      }
    }
    return m_dp[l][r][k];
  }
  int m_c;
  vector<int> m_boxes;
  vector < vector<int>> m_dp[100];
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<int> boxes;
  {
    Solution sln;
    boxes = { 1, 2, 2, 1, 1, 1, 2, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(30, res);
  }
  {
    Solution sln;
    boxes = { 1, 3, 2, 2, 2, 3, 4, 3, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(23, res);
  }
  {
    Solution sln;
    boxes = { 1,1,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(9, res);
  }
  {
    Solution sln;
    boxes = { 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(1, res);
  }
  {
    Solution sln;
    boxes = { 1,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(5, res);
  }
  {
    Solution sln;
    boxes = { 1,2,2,1,1,1,2,1,1,2,1,2,1,1,2,2,1,1,2,2,1,1,1,2,2,2,2,1,2,1,1,2,2,1,2,1,2,2,2,2,2,1,2,1,2,2,1,1,1,2,2,1,2,1,2,2,1,2,1,1,1,2,2,2,2,2,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,1,1,1,2,1,2,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(2758, res);
  }
}

2023年1月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
memset(m_dp, 0, sizeof(m_dp));
return Cal(boxes,0, boxes.size() - 1, 0);
}
int Cal(const vector& boxes,int l, int r, int k)
{
if (l > r)
{
return 0;
}
if (0 != m_dp[l][r][k])
{
return m_dp[l][r][k];
}
int iSum = Cal(boxes,l, r - 1, 0) + (k + 1)*(k + 1);
for (int i = l; i < r; i++)
{
if (boxes[i] != boxes[r])
{
continue;
}
iSum = max(iSum, Cal(boxes, l, i, k + 1) + Cal(boxes, i + 1, r - 1, 0));
}
m_dp[l][r][k] = iSum;
return m_dp[l][r][k];
}
int m_dp[100][100][100] ;
};

2023年6月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
m_c = boxes.size();
memset(m_aLRNum, -1, sizeof(m_aLRNum));
return remove(boxes,0, m_c - 1, 0);
}
int remove(const vector& boxes,const int left, const int right, int k)
{
if (right < left)
{
return 0;
}
int& iRet = m_aLRNum[left][right][k];
if (iRet >= 0)
{
return iRet;
}
iRet = (1 + k)*(1 + k) + remove(boxes,left, right - 1, 0);
int tmp = right-1;
//[1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1],可以先消除中间,只保留两个1
while (tmp >= left)
{
while ((tmp >= left) && (boxes[tmp] != boxes[right]))
{
tmp–;
}
if (tmp < left)
{
return iRet;
}
iRet = max(iRet, remove(boxes, tmp + 1, right - 1, 0) + remove(boxes, left, tmp, k + 1));
tmp–;
}
return iRet;
}
int m_c;
int m_aLRNum[100][100][100];//m_aLRNum[l][r][k] 消除nums的[l.r]及和nums[r]相等的k个数
};

2023年8月代码

class Solution {
public:
int removeBoxes(vector& boxes) {
m_boxes = boxes;
//dp[l][r][k]表示 boxes[l] 到boxes[r] 是最后消除的,消除时后面有k同颜色的数
memset(m_dp, 0, sizeof(m_dp));
return Cal(0, boxes.size() - 1, 0);
}
int Cal(int left, int r, int k)
{
if (r < left)
{
return 0;
}
int& iRet = m_dp[left][r][k];
if (0 != iRet)
{
return iRet;
}
iRet = Cal(left, r - 1, 0) + (k + 1) * (k + 1);//直接消除
for (int i = r - 1; i >= left; i–)
{
if (m_boxes[i] != m_boxes[r])
{
continue;
}
iRet = max(iRet, Cal(left, i, k + 1) + Cal(i + 1, r - 1, 0));
}
return iRet;
}
int m_dp[100][100][100];
vector m_boxes;
};


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。

相关文章
|
2月前
|
算法
【算法】二分算法——搜索插入位置
【算法】二分算法——搜索插入位置
|
6天前
|
存储 算法 安全
超级好用的C++实用库之sha256算法
超级好用的C++实用库之sha256算法
12 1
|
8天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
26 2
|
6天前
|
存储 算法 安全
超级好用的C++实用库之国密sm4算法
超级好用的C++实用库之国密sm4算法
16 0
|
6天前
|
算法 安全 Serverless
超级好用的C++实用库之国密sm3算法
超级好用的C++实用库之国密sm3算法
12 0
|
6天前
|
算法 数据安全/隐私保护 C++
超级好用的C++实用库之MD5信息摘要算法
超级好用的C++实用库之MD5信息摘要算法
13 0
|
2月前
|
机器学习/深度学习 算法 文件存储
【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
39 9
|
2月前
|
算法
【算法】递归、搜索与回溯——汉诺塔
【算法】递归、搜索与回溯——汉诺塔
|
2月前
|
算法 C++ 容器
C++标准库中copy算法的使用
C++标准库中copy算法的使用
20 1
|
2月前
|
存储 算法 调度
基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真
通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。
下一篇
无影云桌面