数据结构:堆的实现

简介: 数据结构:堆的实现

堆总是一棵完全二叉树

1.创建

我们用一个动态顺序表来实现堆,创建一个结构体封装顺序表

2.初始化

3.销毁

4.插入

这里我们以小堆为例,父亲节点小于儿子节点

以这棵树为例,

在逻辑结构上是一棵二叉树

而在物理结构上是顺序表(即数组)

如果我们分别插入10,20,30

向上调整

具体的流程如图

这里的算法思路是:插入到数组,如果child小于parent,则交换child和parent的值,child的坐标调整到parent,parent则调整到(parent-1)/2,继续进行比较交换,直到child调整到0位置结束,这就是向上调整的思路

向上调整的时间复杂度是O(logN)

5.删除

删除我们规定删除堆顶的值,即删除根节点的值

要求删除根节点之后依然是一个堆

我们的思路是:

  1. 第一个节点和最后一个节点交换
  2. 尾删掉最后一个节点
  3. 然后从根节点开始向下调整

交换之后左右子树依旧是小堆

向下调整

向下调整算法的思路是:

  1. 找左右child节点
  2. 左右child节点比较
  3. 和较小的child节点交换
  4. 继续向下调整
  5. 调整到叶子节点就结束

向下调整的时间复杂度是O(logN)

具体的思路是:

找小节点:先找左节点,如果有右节点则比较左右节点,没有就直接是左节点

交换:如果child节点小于parent节点,则交换child和parent的值,然后parent走到child,child走到(parent*2+1)

如果走到叶子节点或者child大于parent节点就跳出循环

6.返回堆顶元素

7.判空

8.返回数据个数

9.访问

总代码

Heap.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
typedef int HPDataType;
typedef struct Heap
{
  HPDataType* a;
  int size;
  int capacity;
}HP;
//初始化
void HPInit(HP* php);
//销毁
void HPDestroy(HP* php);
//交换
void Swap(HPDataType* p1, HPDataType* p2);
//向上调整
void AdjustUp(HPDataType* a, int child);
//插入(小堆)
void HPPush(HP* php, HPDataType x);
//向下调整
void AdjustDown(HPDataType* a, int size, int parent);
//删除(根节点)
void HPPop(HP* php);
//返回堆顶数据
int HPTop(HP* php);
//判空
bool HPEmpty(HP* php);
//返回数据个数
int HPSize(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"\
//初始化
void HPInit(HP* php)
{
  assert(php);
  php->a = NULL;
  php->size = 0;
  php->capacity = 0;
}
//销毁
void HPDestroy(HP* php)
{
  assert(php);
  free(php->a);
  php->a = NULL;
  php->size = 0;
  php->capacity = 0;
}
//交换
void Swap(HPDataType* p1, HPDataType* p2)
{
  HPDataType tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//向上调整
void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (child - 1) / 2;
    }
    else
      break;
  }
}
//插入(小堆)
void HPPush(HP* php, HPDataType x)
{
  assert(php);
  if (php->size == php->capacity)
  {
    int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      exit(-1);
    }
    php->a = tmp;
    php->capacity = newcapacity;
  }
  php->a[php->size] = x;
  php->size++;
  AdjustUp(php->a, php->size - 1);
}
//向下调整
void AdjustDown(HPDataType* a, int size, int parent)
{
  int child = parent * 2 + 1;
  while (child < size)
  {
    if ((child + 1) < size && a[child + 1] < a[child])
      child++;
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
      break;
  }
}
//删除(根节点)
void HPPop(HP* php)
{
  assert(php);
  assert(php->size > 0);
  Swap(&php->a[0], &php->a[php->size - 1]);
  php->size--;
  AdjustDown(php->a, php->size, 0);
}
//返回堆顶数据
int HPTop(HP* php)
{
  assert(php);
  assert(php->size > 0);
  return php->a[0];
}
//判空
bool HPEmpty(HP* php)
{
  assert(php);
  return php->size == 0;
}
//返回数据个数
int HPSize(HP* php)
{
  assert(php);
  return php->size;
}

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"
int main()
{
  int a[] = { 1,5,6,8,9,4,2,3 };
  int sz = sizeof(a) / sizeof(a[0]);
  HP hp;
  HPInit(&hp);
  for (int i = 0; i < sz; i++)
  {
    HPPush(&hp, a[i]);
  }
  while (!HPEmpty(&hp))
  {
    printf("%d ", HPTop(&hp));
    HPPop(&hp);
  }
  printf("\n");
  HPDestroy(&hp);
  return 0;
}


相关文章
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
565 16
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
318 5
【数据结构】优先级队列(堆)从实现到应用详解
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
383 1
【数据结构】大根堆和小根堆
【数据结构】大根堆和小根堆
531 0
|
存储 算法 搜索推荐
数据结构--堆的深度解析
数据结构--堆的深度解析
|
存储 算法 调度
数据结构--二叉树的顺序实现(堆实现)
数据结构--二叉树的顺序实现(堆实现)
|
存储 算法 分布式数据库
【初阶数据结构】理解堆的特性与应用:深入探索完全二叉树的独特魅力
【初阶数据结构】理解堆的特性与应用:深入探索完全二叉树的独特魅力
239 1
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
158 0
|
存储 算法 Java
【用Java学习数据结构系列】用堆实现优先级队列
【用Java学习数据结构系列】用堆实现优先级队列
180 0
|
存储 算法
【数据结构】二叉树——顺序结构——堆及其实现
【数据结构】二叉树——顺序结构——堆及其实现

热门文章

最新文章