从零开始写linux字符设备驱动程序(三)(基于友善之臂tiny4412开发板)

简介: 从零开始写linux字符设备驱动程序(三)(基于友善之臂tiny4412开发板)

这一节,我们再来看看新的知识点,这一次,我们将进一步完善这个字符设备的驱动程序。

首先,将上一节的代码做下修改:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/slab.h>
//创建一个字符设备
struct char_dev
{
    struct cdev c_dev ;
    dev_t dev_num ;
    char buf[1024];  
};
int my_open()
{
    printk("cdev open");  
}
int my_close()
{
    printk("cdev del");
}
struct file_operations my_ops = {
  .open = my_open,
  .release = my_close ,
};
struct char_dev *test_dev ;
static int __init  cdev_test_init(void)
{
  int ret ;
  //1、给字符设备结构分配内存
  test_dev = kmalloc(sizeof(*test_dev),GFP_KERNEL);
  if(!test_dev){
     ret = -ENOMEM ;
     goto malloc_dev_fair;
  }
  //2、申请设备号并注册字符设备
  ret = alloc_chrdev_region(&test_dev->dev_num,1,1,"test_dev");
  if(ret < 0){
     goto alloc_chrdev_fair ;
  }
  //3、初始化字符设备
  cdev_init(&test_dev->dev_num , &my_ops);
  //4、添加一个字符设备
  ret = cdev_add(&test_dev->c_dev,test_dev->dev_num,1); 
  if(ret < 0){
     goto cdev_add_fair;
  }
  my_open();
  return 0 ;
  cdev_add_fair:
  return ret ;
  malloc_dev_fair :
  return ret  ;
  alloc_chrdev_fair :
  return ret ;
}
static int __exit cdev_test_exit(void)
{
  //删除设备
  cdev_del(&test_dev->c_dev);
  //注销驱动-->后面写1表示从dev_no开始连续一个
  unregister_chrdev_region(test_dev->dev_num,1);
  return 0 ;
}
module_init(cdev_test_init);
module_exit(cdev_test_exit);
MODULE_LICENSE("GPL");

在代码中,我们要实现一个虚拟的字符设备,这个设备很简单,只不过更加丰富了。


我们首先创建一个字符设备,用一个结构体char_dev来表示。

对结构体分配内存,然后申请设备号并注册,最后初始化,再将这个字符设备加到内核里去,一旦这些操作成功后,将调用my_open函数。

这就是一个字符设备的最基本构成。

上节我们已经说过alloc_chrdev_region这个函数的作用。

那么这节多了file_operations这个结构体,它的功能是什么?

当一个字符设备被注册后,我们随即就要来操作这个字符设备,open  , read , write , close等操作。

如下代码:

struct file_operations {
  struct module *owner;
  loff_t (*llseek) (struct file *, loff_t, int);
  ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
  ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
  ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
  ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
  int (*readdir) (struct file *, void *, filldir_t);
  unsigned int (*poll) (struct file *, struct poll_table_struct *);
  long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
  long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
  int (*mmap) (struct file *, struct vm_area_struct *);
  int (*open) (struct inode *, struct file *);
  int (*flush) (struct file *, fl_owner_t id);
  int (*release) (struct inode *, struct file *);
  int (*fsync) (struct file *, loff_t, loff_t, int datasync);
  int (*aio_fsync) (struct kiocb *, int datasync);
  int (*fasync) (int, struct file *, int);
  int (*lock) (struct file *, int, struct file_lock *);
  ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
  unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  int (*check_flags)(int);
  int (*flock) (struct file *, int, struct file_lock *);
  ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
  ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
  int (*setlease)(struct file *, long, struct file_lock **);
  long (*fallocate)(struct file *file, int mode, loff_t offset,
        loff_t len);
};

那么内核是如何去识别相应的函数呢?


是通过系统调用

在上层应用程序,打个比方。

通过open()打印相应的设备,那么syscall函数就会通过系统调用号识别到内核态里的函数,进而调用到我们这里实现的my_open,这就是内核态和用户态相互沟通的方式。


这里我就不去写相应的应用程序了,以前也写过了,我就直接将open函数调用放在init函数,随着字符设备注册并执行。

这样将zImage下载到开发板上,串口上也是可以打印cdev_open的。

不知道怎么用应用程序去读写设备的可以参考以下文章:

http://blog.csdn.NET/morixinguan/article/details/50619675

640.jpg

接下来看看本节使用的函数:

void cdev_init(struct cdev *, const struct file_operations *);
int cdev_add(struct cdev *, dev_t, unsigned);
void cdev_del(struct cdev *);
static __always_inline void *kmalloc(size_t size, gfp_t flags);

留心的小伙伴会发现,在exit函数中,我没有对内存进行释放,这里是故意这么做的,为了提醒粗心的伙伴,在内核中,分配的内存一定要释放的。

释放调用函数:

void kfree(const void *objp)


目录
相关文章
|
11天前
|
安全 Linux 网络安全
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
43 0
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
|
2月前
|
数据采集 编解码 运维
一文讲完说懂 WowKey -- WowKey 是一款 Linux 类设备的命令行(CLT)运维工具
WowKey 是一款面向 Linux 类设备的命令行运维工具,支持自动登录、批量执行及标准化维护,适用于企业、团队或个人管理多台设备,显著提升运维效率与质量。
|
3月前
|
监控 Linux 开发者
理解Linux操作系统内核中物理设备驱动(phy driver)的功能。
综合来看,物理设备驱动在Linux系统中的作用是至关重要的,它通过与硬件设备的紧密配合,为上层应用提供稳定可靠的通信基础设施。开发一款优秀的物理设备驱动需要开发者具备深厚的硬件知识、熟练的编程技能以及对Linux内核架构的深入理解,以确保驱动程序能在不同的硬件平台和网络条件下都能提供最优的性能。
172 0
|
5月前
|
安全 Ubuntu Linux
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
158 0
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
|
6月前
|
数据采集 运维 安全
Linux设备命令行运维工具WowKey问答
WowKey 是一款用于 Linux 设备运维的工具,可通过命令行手动或自动执行指令剧本,实现批量、标准化操作,如健康检查、数据采集、配置更新等。它简单易用,只需编写 WIS 指令剧本和 APT 帐号密码表文件,学习成本极低。支持不同流派的 Linux 系统,如 RHEL、Debian、SUSE 等,只要使用通用 Shell 命令即可通吃Linux设备。
|
28天前
|
Unix Linux 程序员
Linux文本搜索工具grep命令使用指南
以上就是对Linux环境下强大工具 `grep` 的基础到进阶功能介绍。它不仅能够执行简单文字查询任务还能够处理复杂文字处理任务,并且支持强大而灵活地正则表达规范来增加查询精度与效率。无论您是程序员、数据分析师还是系统管理员,在日常工作中熟练运用该命令都将极大提升您处理和分析数据效率。
104 16
|
20天前
|
Linux
linux命令—stat
`stat` 是 Linux 系统中用于查看文件或文件系统详细状态信息的命令。相比 `ls -l`,它提供更全面的信息,包括文件大小、权限、所有者、时间戳(最后访问、修改、状态变更时间)、inode 号、设备信息等。其常用选项包括 `-f` 查看文件系统状态、`-t` 以简洁格式输出、`-L` 跟踪符号链接,以及 `-c` 或 `--format` 自定义输出格式。通过这些选项,用户可以灵活获取所需信息,适用于系统调试、权限检查、磁盘管理等场景。
|
3月前
|
监控 Linux 网络安全
Linux命令大全:从入门到精通
日常使用的linux命令整理
669 13
|
4月前
|
Linux 网络安全 数据安全/隐私保护
使用Linux系统的mount命令挂载远程服务器的文件夹。
如此一来,你就完成了一次从你的Linux发车站到远程服务器文件夹的有趣旅行。在这个技术之旅中,你既探索了新地方,也学到了如何桥接不同系统之间的距离。
558 21
|
4月前
|
JSON 自然语言处理 Linux
linux命令—tree
tree是一款强大的Linux命令行工具,用于以树状结构递归展示目录和文件,直观呈现层级关系。支持多种功能,如过滤、排序、权限显示及格式化输出等。安装方法因系统而异常用场景包括:基础用法(显示当前或指定目录结构)、核心参数应用(如层级控制-L、隐藏文件显示-a、完整路径输出-f)以及进阶操作(如磁盘空间分析--du、结合grep过滤内容、生成JSON格式列表-J等)。此外,还可生成网站目录结构图并导出为HTML文件。注意事项:使用Tab键补全路径避免错误;超大目录建议限制遍历层数;脚本中推荐禁用统计信息以优化性能。更多详情可查阅手册mantree。
linux命令—tree