Python之极验滑动验证码的识别(教程+案例)

简介: Python之极验滑动验证码的识别(教程+案例)

点击上面“蓝字”关注我们!


极验滑动验证码的识别


02/11

周六 晴


1 滑动验证码的识别介绍

  • 本节目标:用程序识别极验滑动验证码的验证,包括分析识别思路、识别缺口位置、生成滑块拖动路径、模拟实现滑块拼合通过验证等步骤。
  • 准备工作:本次案例我们使用Python库是Selenium,浏览器为Chrome。请确保已安装Selenium库和ChromeDriver浏览器驱动。
  • 了解极验滑动验证码:
  • 极验滑动验证码官网为:http://www.geetest.com/
  • 验证方式为拖动滑块拼合图像,若图像完全拼合,则验证成功,否则需要重新验证,如图所示:


2 实现步骤:

① 初始化

  • 初始化链接地址、创建模拟浏览器对象、设置登录账户和密码等信息。
EMAIL = '登录账户'
PASSWORD = '登录密码'
class CrackGeetest():
    def __init__(self):
        self.url = 'https://account.geetest.com/login'
        self.browser = webdriver.Chrome()
        #设置显示等待时间
        self.wait = WebDriverWait(self.browser, 20)
        self.email = EMAIL
        self.password = PASSWORD
    def crack():
        pass
# 程序主入口
if __name__ == '__main__':
    crack = CrackGeetest()
    crack.crack()

② 模拟登录填写,点开滑块验证

  • 在实例化CrackGeetest对象后调用crack()方法开始模拟登录验证...
  • 调用open()方法,打开登录界面,获取账户和密码输入框节点,完成账户和密码的输入。
  • 调用get_geetest_button()方法获取滑动验证按钮,并点击。
class CrackGeetest():
    #...
    def get_geetest_button(self):
        ''' 获取初始验证按钮,return:按钮对象 '''
        button = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_radar_tip')))
        return button
    def open(self):
        ''' 打开网页输入用户名密码, return: None '''
        self.browser.get(self.url)
        email = self.wait.until(EC.presence_of_element_located((By.ID, 'email')))
        password = self.wait.until(EC.presence_of_element_located((By.ID, 'password')))
        email.send_keys(self.email)
        password.send_keys(self.password)
    def crack(self):
        # 输入用户名密码
        self.open()
        # 点击验证按钮
        button = self.get_geetest_button()
        button.click()
        #...
    #...

③ 获取并储存有无缺口的两张图片

  • 首先获取无缺口的验证图片,并保存到本地
  • 获取滑块对象,并执行点击,让浏览器中显示有缺口图片
  • 获取有缺口的验证图片,并保存到本地
def get_position(self):
        ''' 获取验证码位置, return: 验证码位置(元组) '''
        img = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_canvas_img')))
        time.sleep(2)
        location = img.location
        size = img.size
        top,bottom,left,right = location['y'],location['y']+size['height'],location['x'],location['x']+size['width']
        return (top, bottom, left, right)
    def get_screenshot(self):
        ''' 获取网页截图, return: 截图对象 '''
        #浏览器截屏
        screenshot = self.browser.get_screenshot_as_png()
        screenshot = Image.open(BytesIO(screenshot))
        return screenshot
    def get_geetest_image(self, name='captcha.png'):
        ''' 获取验证码图片, return: 图片对象 '''
        top, bottom, left, right = self.get_position()
        print('验证码位置', top, bottom, left, right)
        screenshot = self.get_screenshot()
        #从网页截屏图片中裁剪处理验证图片
        captcha = screenshot.crop((left, top, right, bottom))
        captcha.save(name)
        return captcha
    def get_slider(self):
        ''' 获取滑块, return: 滑块对象 '''
        slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_slider_button')))
        return slider
    def crack(self):
        #...
        # 获取验证码图片
        image1 = self.get_geetest_image('captcha1.png')
        # 点按呼出缺口
        slider = self.get_slider()
        slider.click()
        # 获取带缺口的验证码图片
        image2 = self.get_geetest_image('captcha2.png')
        #...

④ 获取缺口位置

  • 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
BORDER = 6
INIT_LEFT = 60
class CrackGeetest():  
    def get_gap(self, image1, image2):
        ''' 获取缺口偏移量, 参数:image1不带缺口图片、image2带缺口图片。返回偏移量 '''
        left = 65
        for i in range(left, image1.size[0]):
            for j in range(image1.size[1]):
                if not self.is_pixel_equal(image1, image2, i, j):
                    left = i
                    return left
        return left
    def is_pixel_equal(self, image1, image2, x, y):
        '''
        判断两个像素是否相同
        :param image1: 图片1
        :param image2: 图片2
        :param x: 位置x
        :param y: 位置y
        :return: 像素是否相同
        '''
        # 取两个图片的像素点(R、G、B)
        pixel1 = image1.load()[x, y]
        pixel2 = image2.load()[x, y]
        threshold = 60
        if abs(pixel1[0]-pixel2[0])<threshold and abs(pixel1[1]-pixel2[1])<threshold and abs(pixel1[2]-pixel2[2])<threshold:
            return True
        else:
            return False
    def crack(self):
        #...
        # 获取缺口位置
        gap = self.get_gap(image1, image2)
        print('缺口位置', gap)
        # 减去缺口位移
        gap -= BORDER

⑤ 获取移动轨迹

  • 模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
def get_track(self, distance):
        '''
        根据偏移量获取移动轨迹
        :param distance: 偏移量
        :return: 移动轨迹
        '''
        # 移动轨迹
        track = []
        # 当前位移
        current = 0
        # 减速阈值
        mid = distance * 4 / 5
        # 计算间隔
        t = 0.2
        # 初速度
        v = 0
        while current < distance:
            if current < mid:
                # 加速度为正2
                a = 2
            else:
                # 加速度为负3
                a = -3
            # 初速度v0
            v0 = v
            # 当前速度v = v0 + at
            v = v0 + a * t
            # 移动距离x = v0t + 1/2 * a * t^2
            move = v0 * t + 1 / 2 * a * t * t
            # 当前位移
            current += move
            # 加入轨迹
            track.append(round(move))
        return track
    def crack(self):
        #...
        # 获取移动轨迹
        track = self.get_track(gap)
        print('滑动轨迹', track)

⑥ 按照轨迹拖动,完全验证

def move_to_gap(self, slider, track):
        '''
        拖动滑块到缺口处
        :param slider: 滑块
        :param track: 轨迹
        :return:
        '''
        ActionChains(self.browser).click_and_hold(slider).perform()
        for x in track:
            ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
        time.sleep(0.5)
        ActionChains(self.browser).release().perform()
    def crack(self):
        #...
        # 拖动滑块
        self.move_to_gap(slider, track)
        success = self.wait.until(
            EC.text_to_be_present_in_element((By.CLASS_NAME, 'geetest_success_radar_tip_content'), '验证成功'))
        print(success)

⑦ 完成登录

def login(self):
        ''' 执行登录 return: None '''
        submit = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'login-btn')))
        submit.click()
        time.sleep(10)
        print('登录成功')
    def crack(self):
        #...
        # 失败后重试
        if not success:
            self.crack()
        else:
            self.login()

注:后台回复:【验证码】即可获取源码

岁月有你  惜惜相处

相关文章
|
5月前
|
机器学习/深度学习 数据采集 API
Python自动化解决滑块验证码的最佳实践
Python自动化解决滑块验证码的最佳实践
|
2月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
2月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
160 0
|
1月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
4月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
322 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
3月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
322 1
|
3月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
184 0
|
5月前
|
Python
Python教程:os 与 sys 模块详细用法
os 模块用于与操作系统交互,主要涉及夹操作、路径操作和其他操作。例如,`os.rename()` 重命名文件,`os.mkdir()` 创建文件夹,`os.path.abspath()` 获取文件绝对路径等。sys 模块则用于与 Python 解释器交互,常用功能如 `sys.path` 查看模块搜索路径,`sys.platform` 检测操作系统等。这些模块提供了丰富的工具,便于开发中处理系统和文件相关任务。
234 14

推荐镜像

更多