双层优化入门(2)—基于yalmip的双层优化求解(附matlab代码)

简介: ​上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法,这篇博客将介绍使用yalmip的双层优化问题的求解方法。1.KKT函数通过调用yalmip工具箱中的KKT函数,可以直接求出优化问题的KKT条件,省去自己手动写的步骤。2.solvebilevel函数solvebilevel是yalmip工具箱内置的求解双层优化问题的函数。也就是通过这个函数,不需要咱手动写KKT条件,也不需要使用KKT函数,直接把上、下层优化的目标函数、约束条件往里面一放,就能求出结果。​

         上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法,这篇博客将介绍使用yalmip的双层优化问题的求解方法。

1.KKT函数

       通过调用yalmip工具箱中的KKT函数,可以直接求出优化问题的KKT条件,省去自己手动写的步骤,函数用法如下:

[KKTsystem, details] = kkt(Constraint,Objective,z)

image.gif

       其中z表示优化变量,KKTsystem存储KKT条件的约束表达式,details是一个结构体变量,用于存储KKT条件的细节。以上一篇博客中双层优化问题的下层优化问题为例:


matlab代码:

%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints=[-3*x+y <= -3 , 3*x+y <= 30];
objective=-y;
[KKTsystem, details] = kkt(Constraints,objective,x);

image.gif

运行结果:

image.gif


       将下层优化的KKT条件作为约束添加到上层优化中,就可以求出这个双层优化的结果:

%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
[KKTsystem , details] = kkt(Constraints_down,objective_down,x);
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'gurobi');
result=optimize([KKTsystem,Constraints_up,boundingbox([Constraints_up,Constraints_down])],objective_up,ops);
%% 输出模型
saveampl(KKTsystem,objective_down,'KKT_model');
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])

image.gif

       求解的结果如下:

image.gif

       和上一篇博客手动写KKT的求解结果一致。

       上面的例子是一个简单的线性双层优化问题,yalmip官方文档中给出了使用KKT函数求解非线性双层优化的例子。这个双层优化问题如下:

image.gif

一样可以用KKT函数求解,代码如下(这是官网提供的代码):

sdpvar x1 x2 y1 y2 y3
OO = -8*x1-4*x2+4*y1-40*y2-4*y3;
OO = OO+OO^2;
CO = [x1>=0, x2>=0];
OI = (x1+2*x2+y1+y2+2*y3)^2;
CI = [[y1 y2 y3] >= 0,
       -y1+y2+y3 <= 10,
      2*x1-y1+2*y2-0.5*y3 <= 10,
      2*x2+2*y1-y2-0.5*y3 <= 9.7];
[K,details] = kkt(CI,OI,[x1 x2])
optimize([K,CO,boundingbox([CI,CO]),details.dual<=100],OO)

image.gif

求解结果为:

最优目标函数为-0.25

x1=0.0625,x2=0,y1=0,y2=0,y3=0。

2.solvebilevel函数

       solvebilevel是yalmip工具箱内置的求解双层优化问题的函数。也就是通过这个函数,不需要咱手动写KKT条件,也不需要使用KKT函数,直接把上、下层优化的目标函数、约束条件往里面一放,就能求出结果。

       代码如下:

%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
solvebilevel(Constraints_up,objective_up,Constraints_down,objective_down,y)
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])

image.gif

求解结果如下:

image.gif

        和上篇博客手动写KKT条件,这篇博客利用KKT函数求解的结果都是一样的,确实比较省事。但也要注意,这个函数只适用于规模较小的问题,如果问题规模比较大,还是需要自己手动进行双层问题的求解。

完整代码可以从这里获取:

双层优化入门(2)-基于yalmip的双层优化求解

参考资料均来源于yalmip官方文档:

[1]KKT函数的用法介绍

[2]双层优化的求解

[3]双层优化求解的备用方法

[4]solvebilevel函数用法介绍

目录
打赏
0
0
0
0
38
分享
相关文章
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
111 31
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
2月前
|
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
75 18

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等