48-微服务技术栈(高级):分布式协调服务zookeeper源码篇(Watcher机制-3[Zookeeper])

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:   前面已经分析了Watcher机制中的大多数类,本篇对于ZKWatchManager的外部类Zookeeper进行分析。

一、前言

  前面已经分析了Watcher机制中的大多数类,本篇对于ZKWatchManager的外部类Zookeeper进行分析。

二、ZooKeeper源码分析

2.1 类的内部类

  ZooKeeper的内部类框架图如下图所示

  

  

说明:

  • ZKWatchManager,Zookeeper的Watcher管理者,其源码在之前已经分析过,不再累赘。
  • WatchRegistration,抽象类,用作watch注册。
  • ExistsWatchRegistration,存在性watch注册。
  • DataWatchRegistration,数据watch注册。
  • ChildWatchRegistration,子节点注册。
  • States,枚举类型,表示服务器的状态。

1. WatchRegistration

  接口类型,表示对路径注册监听。  

abstract class WatchRegistration {

   // Watcher

   private Watcher watcher;

   // 客户端路径

   private String clientPath;


   // 构造函数

   public WatchRegistration(Watcher watcher, String clientPath)

   {

       this.watcher = watcher;

       this.clientPath = clientPath;

   }

   // 获取路径到Watchers集合的键值对,由子类实现

   abstract protected Map> getWatches(int rc);

   /**

        * Register the watcher with the set of watches on path.

        * @param rc the result code of the operation that             attempted to

        * add the watch on the path.

        */

   // 注册

   public void register(int rc) {

       if (shouldAddWatch(rc)) { // 应该添加监听

           // 获取路径到Watchers集合的键值对,工厂模式

           Map> watches = getWatches(rc);

           synchronized(watches) { // 同步块

               // 通过路径获取watcher集合

               Set watchers = watches.get(clientPath);

               if (watchers == null) { // watcher集合为空

                   // 新生成集合

                   watchers = new HashSet();

                   // 将路径和watchers集合存入

                   watches.put(clientPath, watchers);

               }

               // 添加至watchers集合

               watchers.add(watcher);

           }

       }

   }

   /**

        * Determine whether the watch should be added based on return code.

        * @param rc the result code of the operation that attempted to add the

        * watch on the node

        * @return true if the watch should be added, otw false

        */

   // 判断是否需要添加,判断rc是否为0

   protected boolean shouldAddWatch(int rc) {

       return rc == 0;

   }

}

说明:可以看到WatchRegistration包含了Watcher和clientPath字段,表示监听和对应的路径,值得注意的是getWatches方式抽象方法,需要子类实现,而在register方法中会调用getWatches方法,实际上调用的是子类的getWatches方法,这是典型的工厂模式。register方法首先会判定是否需要添加监听,然后再进行相应的操作,在WatchRegistration类的默认实现中shouldAddWatch是判定返回码是否为0。

2. ExistsWatchRegistration 

class ExistsWatchRegistration extends WatchRegistration {

   // 构造函数

   public ExistsWatchRegistration(Watcher watcher, String clientPath) {

       // 调用父类构造函数

       super(watcher, clientPath);

   }


   @Override

   protected Map> getWatches(int rc) {

       // 根据rc是否为0确定返回dataWatches或existsWatches

       return rc == 0 ?  watchManager.dataWatches : watchManager.existWatches;

   }

   @Override

   protected boolean shouldAddWatch(int rc) {

       // 判断rc是否为0或者rc是否等于NONODE的值

       return rc == 0 || rc == KeeperException.Code.NONODE.intValue();

   }

}

说明:ExistsWatchRegistration 表示对存在性监听的注册,其实现了getWatches方法,并且重写了shouldAddWatch方法,getWatches方法是根据返回码的值确定返回dataWatches或者是existWatches。

3. DataWatchRegistration

class DataWatchRegistration extends WatchRegistration {

   // 构造函数

   public DataWatchRegistration(Watcher watcher, String clientPath) {

       // 调用父类构造函数

       super(watcher, clientPath);

   }

   @Override

   protected Map> getWatches(int rc) {

       // 直接返回dataWatches

       return watchManager.dataWatches;

   }

}

说明:DataWatchRegistration表示对数据监听的注册,其实现了getWatches方法,返回dataWatches。

4. ChildWatchRegistration

class ChildWatchRegistration extends WatchRegistration {

   // 构造函数

   public ChildWatchRegistration(Watcher watcher, String clientPath) {

       // 调用父类构造函数

       super(watcher, clientPath);

   }

   @Override

   protected Map> getWatches(int rc) {

       // 直接返回childWatches

       return watchManager.childWatches;

   }

}

说明:ChildWatchRegistration表示对子节点监听的注册,其实现了getWatches方法,返回childWatches。

5. States

public enum States {

   // 代表服务器的状态

   CONNECTING, ASSOCIATING, CONNECTED, CONNECTEDREADONLY,

   CLOSED, AUTH_FAILED, NOT_CONNECTED;

   // 是否存活

   public boolean isAlive() {

       // 不为关闭状态并且未认证失败

       return this != CLOSED && this != AUTH_FAILED;

   }

   /**

        * Returns whether we are connected to a server (which

        * could possibly be read-only, if this client is allowed

        * to go to read-only mode)

        * */

   // 是否连接

   public boolean isConnected() {

       // 已连接或者只读连接

       return this == CONNECTED || this == CONNECTEDREADONLY;

   }

}

说明:States为枚举类,表示服务器的状态,其有两个方法,判断服务器是否存活和判断客户端是否连接至服务端。

2.2 类的属性  

public class ZooKeeper {

   // 客户端Socket

   public static final String ZOOKEEPER_CLIENT_CNXN_SOCKET = "zookeeper.clientCnxnSocket";

   

   // 客户端,用来管理客户端与服务端的连接

   protected final ClientCnxn cnxn;

   

   // Logger日志

   private static final Logger LOG;

   static {

       //Keep these two lines together to keep the initialization order explicit

       // 初始化

       LOG = LoggerFactory.getLogger(ZooKeeper.class);

       Environment.logEnv("Client environment:", LOG);

   }

 private final ZKWatchManager watchManager = new ZKWatchManager();

}

  说明:ZooKeeper类存维护一个ClientCnxn类,用来管理客户端与服务端的连接。  

2.3 类的构造函数

1. ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, boolean canBeReadOnly)型构造函数    

public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher,

           boolean canBeReadOnly) throws IOException

   {

       LOG.info("Initiating client connection, connectString=" + connectString

               + " sessionTimeout=" + sessionTimeout + " watcher=" + watcher);

       // 初始化默认Watcher

       watchManager.defaultWatcher = watcher;

       // 对传入的connectString进行解析

       // connectString 类似于127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002未指定根空间的字符串

       // 或者是127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002/app/a指定根空间的字符串,根为/app/a

       ConnectStringParser connectStringParser = new ConnectStringParser(

               connectString);


       // 根据服务器地址列表生成HostProvider

       HostProvider hostProvider = new StaticHostProvider(

               connectStringParser.getServerAddresses());

       // 生成客户端管理

       cnxn = new ClientCnxn(connectStringParser.getChrootPath(),

               hostProvider, sessionTimeout, this, watchManager,

               getClientCnxnSocket(), canBeReadOnly);

       // 启动

       cnxn.start();

   }

  说明:该构造函数会初始化WatchManager的defaultWatcher,同时会解析服务端地址和端口号,之后根据服务端的地址生成HostProvider(其会打乱服务器的地址),之后生成客户端管理并启动,注意此时会调用getClientCnxnSocket函数,其源码如下  

private static ClientCnxnSocket getClientCnxnSocket() throws IOException {

   // 查看是否在系统属性中进行了设置

   String clientCnxnSocketName = System

       .getProperty(ZOOKEEPER_CLIENT_CNXN_SOCKET);

   if (clientCnxnSocketName == null) { // 若未进行设置,取得ClientCnxnSocketNIO的类名

       clientCnxnSocketName = ClientCnxnSocketNIO.class.getName();

   }

   try {

       // 使用反射新生成实例然后返回

       return (ClientCnxnSocket) Class.forName(clientCnxnSocketName)

           .newInstance();

   } catch (Exception e) {

       IOException ioe = new IOException("Couldn't instantiate "

                                         + clientCnxnSocketName);

       ioe.initCause(e);

       throw ioe;

   }

}

说明:该函数会利用反射创建ClientCnxnSocketNIO实例

2. public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolean canBeReadOnly) throws IOException型构造函数  

public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher,

           long sessionId, byte[] sessionPasswd, boolean canBeReadOnly)

       throws IOException

   {

       LOG.info("Initiating client connection, connectString=" + connectString

               + " sessionTimeout=" + sessionTimeout

               + " watcher=" + watcher

               + " sessionId=" + Long.toHexString(sessionId)

               + " sessionPasswd="

               + (sessionPasswd == null ? "" : ""));

       // 初始化默认Watcher

       watchManager.defaultWatcher = watcher;

       // 对传入的connectString进行解析

       // connectString 类似于127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002未指定根空间的字符串

       // 或者是127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002/app/a指定根空间的字符串,根为/app/a

       ConnectStringParser connectStringParser = new ConnectStringParser(

               connectString);


       // 根据服务器地址列表生成HostProvider

       HostProvider hostProvider = new StaticHostProvider(

               connectStringParser.getServerAddresses());

       // 生成客户端时使用了session密码

       cnxn = new ClientCnxn(connectStringParser.getChrootPath(),

               hostProvider, sessionTimeout, this, watchManager,

               getClientCnxnSocket(), sessionId, sessionPasswd, canBeReadOnly);


       // 设置客户端的seenRwServerBefore字段为true(因为用户提供了sessionId,表示肯定已经连接过)

       cnxn.seenRwServerBefore = true; // since user has provided sessionId

       // 启动

       cnxn.start();

   }

  说明:此型构造函数和之前构造函数的区别在于本构造函数提供了sessionId和sessionPwd,这表明用户已经之前已经连接过服务端,所以能够获取到sessionId,其流程与之前的构造函数类似,不再累赘。

2.4 核心函数分析

1. create函数  

函数签名:

public String create(final String path, byte data[], List acl, CreateMode createMode)

throws KeeperException, InterruptedException

public String create(final String path, byte data[], List acl,

           CreateMode createMode)

       throws KeeperException, InterruptedException

   {

       final String clientPath = path;


       // 验证路径是否合法

       PathUtils.validatePath(clientPath, createMode.isSequential());

       // 添加根空间

       final String serverPath = prependChroot(clientPath);

       // 新生请求头

       RequestHeader h = new RequestHeader();

       // 设置请求头类型

       h.setType(ZooDefs.OpCode.create);

       // 新生创建节点请求

       CreateRequest request = new CreateRequest();

       // 新生创建节点响应

       CreateResponse response = new CreateResponse();

       // 设置请求的数据

       request.setData(data);

       // 设置请求对应的Flag

       request.setFlags(createMode.toFlag());

       // 设置服务器路径

       request.setPath(serverPath);

       if (acl != null && acl.size() == 0) { // ACL不为空但是大小为0,抛出异常

           throw new KeeperException.InvalidACLException();

       }

       // 设置请求的ACL列表

       request.setAcl(acl);

       // 提交请求

       ReplyHeader r = cnxn.submitRequest(h, request, response, null);

       if (r.getErr() != 0) { // 请求的响应的错误码不为0,则抛出异常

           throw KeeperException.create(KeeperException.Code.get(r.getErr()),

                   clientPath);

       }

       if (cnxn.chrootPath == null) { // 根空间为空

           // 则返回响应中的路径

           return response.getPath();

       } else {

           // 除去根空间后返回

           return response.getPath().substring(cnxn.chrootPath.length());

       }

   }

说明:该create函数是同步的,主要用作创建节点,其大致步骤如下

  ① 验证路径是否合法,若不合法,抛出异常,否则进入②

  ② 添加根空间,生成请求头、请求、响应等,并设置相应字段,进入③

  ③ 通过客户端提交请求,判断返回码是否为0,若不是,则抛出异常,否则,进入④

  ④ 除去根空间后,返回响应的路径

  其中会调用submitRequest方法,其源码如下  

public ReplyHeader submitRequest(RequestHeader h, Record request,

           Record response, WatchRegistration watchRegistration)

   throws InterruptedException {

   // 新生响应头

   ReplyHeader r = new ReplyHeader();

   // 新生Packet包

   Packet packet = queuePacket(h, r, request, response, null, null, null,

                               null, watchRegistration);

   synchronized (packet) { // 同步

       while (!packet.finished) { // 如果没有结束

           // 则等待

           packet.wait();

       }

   }

   // 返回响应头

   return r;

}

说明:submitRequest会将请求封装成Packet包,然后一直等待packet包响应结束,然后返回;若没结束,则等待。可以看到其是一个同步方法。

2. create函数

函数签名:

public void create(final String path, byte data[], List acl, CreateMode createMode, StringCallback cb, Object ctx)  

public void create(final String path, byte data[], List acl,

           CreateMode createMode,  StringCallback cb, Object ctx)

{

   final String clientPath = path;


   // 验证路径是否合法

   PathUtils.validatePath(clientPath, createMode.isSequential());

   // 添加根空间

   final String serverPath = prependChroot(clientPath);

   // 新生请求头

   RequestHeader h = new RequestHeader();

   // 设置请求头类型

   h.setType(ZooDefs.OpCode.create);

   // 新生创建节点请求

   CreateRequest request = new CreateRequest();

   // 新生创建节点响应

   CreateResponse response = new CreateResponse();

   // 新生响应头

   ReplyHeader r = new ReplyHeader();

   // 设置请求的数据

   request.setData(data);

   // 设置请求对应的Flag

   request.setFlags(createMode.toFlag());

   // 设置服务

   request.setPath(serverPath);

   // 设置ACL列表

   request.setAcl(acl);

   // 封装成packet放入队列,等待提交

   cnxn.queuePacket(h, r, request, response, cb, clientPath,

                    serverPath, ctx, null);

}

说明:该create函数是异步的,其大致步骤与同步版的create函数相同,只是最后其会将请求打包成packet,然后放入队列等待提交。

3. delete函数  

函数签名:public void delete(final String path, int version) throws InterruptedException, KeeperException

public void delete(final String path, int version)

       throws InterruptedException, KeeperException

   {

       final String clientPath = path;

       // 验证路径的合法性

       PathUtils.validatePath(clientPath);

       final String serverPath;

       // maintain semantics even in chroot case

       // specifically - root cannot be deleted

       // I think this makes sense even in chroot case.

       if (clientPath.equals("/")) { // 判断是否是"/",即zookeeper的根目录,根目录无法删除

           // a bit of a hack, but delete(/) will never succeed and ensures

           // that the same semantics are maintained

           //

           serverPath = clientPath;

       } else { // 添加根空间

           serverPath = prependChroot(clientPath);

       }


       // 新生请求头

       RequestHeader h = new RequestHeader();

       // 设置请求头类型

       h.setType(ZooDefs.OpCode.delete);

       // 新生删除请求

       DeleteRequest request = new DeleteRequest();

       // 设置路径

       request.setPath(serverPath);

       // 设置版本号

       request.setVersion(version);

       // 新生响应头

       ReplyHeader r = cnxn.submitRequest(h, request, null, null);

       if (r.getErr() != 0) { // 判断返回码

           throw KeeperException.create(KeeperException.Code.get(r.getErr()),

                   clientPath);

       }

   }

说明:该函数是同步的,其流程与create流程相似,不再累赘。

4. delete函数

函数签名:public void delete(final String path, int version, VoidCallback cb, Object ctx)

public void delete(final String path, int version, VoidCallback cb,

           Object ctx)

   {

       final String clientPath = path;

       

       // 验证路径是否合法

       PathUtils.validatePath(clientPath);

       final String serverPath;

       // maintain semantics even in chroot case

       // specifically - root cannot be deleted

       // I think this makes sense even in chroot case.

       if (clientPath.equals("/")) { // 判断是否是"/",即zookeeper的根目录,根目录无法删除

           // a bit of a hack, but delete(/) will never succeed and ensures

           // that the same semantics are maintained

           serverPath = clientPath;

       } else {

           serverPath = prependChroot(clientPath);

       }

       

       // 新生请求头

       RequestHeader h = new RequestHeader();

       // 设置请求头类型

       h.setType(ZooDefs.OpCode.delete);

       // 新生删除请求

       DeleteRequest request = new DeleteRequest();

       // 设置路径

       request.setPath(serverPath);

       // 设置版本号

       request.setVersion(version);

       // 封装成packet放入队列,等待提交

       cnxn.queuePacket(h, new ReplyHeader(), request, null, cb, clientPath,

               serverPath, ctx, null);

   }

  说明:该函数是异步的,其流程也相对简单,不再累赘。

5. multi函数  

public List multi(Iterable ops) throws InterruptedException, KeeperException {

   for (Op op : ops) { // 验证每个操作是否合法

       op.validate();

   }

   // reconstructing transaction with the chroot prefix

   // 新生事务列表

   List transaction = new ArrayList();

   for (Op op : ops) { // 将每个操作添加根空间后添加到事务列表中

       transaction.add(withRootPrefix(op));

   }

   // 调用multiInternal后返回

   return multiInternal(new MultiTransactionRecord(transaction));

}

说明:该函数用于执行多个操作或者不执行,其首先会验证每个操作的合法性,然后将每个操作添加根空间后加入到事务列表中,之后会调用multiInternal函数,其源码如下  

protected List multiInternal(MultiTransactionRecord request)

   throws InterruptedException, KeeperException {

   // 新生请求头

   RequestHeader h = new RequestHeader();

   // 设置请求头类型

   h.setType(ZooDefs.OpCode.multi);

   // 新生多重响应

   MultiResponse response = new MultiResponse();

   // 新生响应头

   ReplyHeader r = cnxn.submitRequest(h, request, response, null);

   if (r.getErr() != 0) { // 判断返回码是否为0

       throw KeeperException.create(KeeperException.Code.get(r.getErr()));

   }

   // 获取响应的结果集

   List results = response.getResultList();


   ErrorResult fatalError = null;

   for (OpResult result : results) { // 遍历结果集

       if (result instanceof ErrorResult && ((ErrorResult)result).getErr() != KeeperException.Code.OK.intValue()) { //判断结果集中是否出现了异常

           fatalError = (ErrorResult) result;

           break;

       }

   }

   if (fatalError != null) { // 出现了异常

       // 新生异常后抛出

       KeeperException ex = KeeperException.create(KeeperException.Code.get(fatalError.getErr()));

       ex.setMultiResults(results);

       throw ex;

   }

   // 返回结果集

   return results;

}

说明:multiInternal函数会提交多个操作并且等待响应结果集,然后判断结果集中是否有异常,若有异常则抛出异常,否则返回响应结果集。

6. exists函数  

函数签名:public Stat exists(final String path, Watcher watcher) throws KeeperException, InterruptedException

public Stat exists(final String path, Watcher watcher)

       throws KeeperException, InterruptedException

   {

       final String clientPath = path;


       // 验证路径是否合法

       PathUtils.validatePath(clientPath);

       // the watch contains the un-chroot path

       WatchRegistration wcb = null;

       if (watcher != null) { // 生成存在性注册

           wcb = new ExistsWatchRegistration(watcher, clientPath);

       }

       // 添加根空间

       final String serverPath = prependChroot(clientPath);

       // 新生请求头

       RequestHeader h = new RequestHeader();

       // 设置请求头类型

       h.setType(ZooDefs.OpCode.exists);

       // 新生节点存在请求

       ExistsRequest request = new ExistsRequest();

       // 设置路径

       request.setPath(serverPath);

       // 设置Watcher

       request.setWatch(watcher != null);

       // 新生设置数据响应

       SetDataResponse response = new SetDataResponse();

       // 提交请求

       ReplyHeader r = cnxn.submitRequest(h, request, response, wcb);

       if (r.getErr() != 0) { // 判断返回码

           if (r.getErr() == KeeperException.Code.NONODE.intValue()) {

               return null;

           }

           throw KeeperException.create(KeeperException.Code.get(r.getErr()),

                   clientPath);

       }


       // 返回结果的状态

       return response.getStat().getCzxid() == -1 ? null : response.getStat();

   }

说明:该函数是同步的,用于判断指定路径的节点是否存在,值得注意的是,其会对指定路径的结点进行注册监听。

7. exists

函数签名:public void exists(final String path, Watcher watcher, StatCallback cb, Object ctx) 

public void exists(final String path, Watcher watcher,

           StatCallback cb, Object ctx)

{

   final String clientPath = path;

   // 验证路径是否合法

   PathUtils.validatePath(clientPath);

   // the watch contains the un-chroot path

   WatchRegistration wcb = null;

   if (watcher != null) { // 生成存在性注册

       wcb = new ExistsWatchRegistration(watcher, clientPath);

   }

   // 添加根空间

   final String serverPath = prependChroot(clientPath);

   // 新生请求头

   RequestHeader h = new RequestHeader();

   // 设置请求头类型

   h.setType(ZooDefs.OpCode.exists);

   // 新生节点存在请求

   ExistsRequest request = new ExistsRequest();

   // 设置路径

   request.setPath(serverPath);

   // 设置Watcher

   request.setWatch(watcher != null);

   // 新生设置数据响应

   SetDataResponse response = new SetDataResponse();

   // 将请求封装成packet,放入队列,等待执行

   cnxn.queuePacket(h, new ReplyHeader(), request, response, cb,

                    clientPath, serverPath, ctx, wcb);

}

说明:该函数是异步的,与同步的流程相似,不再累赘。

之后的getData、setData、getACL、setACL、getChildren函数均类似,只是生成的响应类别和监听类别不相同,大同小异,不再累赘。

三、总结

  本篇博文分析了Watcher机制的ZooKeeper类,该类包括了对服务器的很多事务性操作,并且包含了同步和异步两个版本,但是相对来说,较为简单。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4天前
|
监控 负载均衡 Cloud Native
ZooKeeper分布式协调服务详解:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入剖析ZooKeeper分布式协调服务原理,涵盖核心概念如Server、Client、ZNode、ACL、Watcher,以及ZAB协议在一致性、会话管理、Leader选举中的作用。讨论ZooKeeper数据模型、操作、会话管理、集群部署与管理、性能调优和监控。同时,文章探讨了ZooKeeper在分布式锁、队列、服务注册与发现等场景的应用,并在面试方面分析了与其它服务的区别、实战挑战及解决方案。附带Java客户端实现分布式锁的代码示例,助力提升面试表现。
131 2
|
4天前
|
存储 大数据 Apache
深入理解ZooKeeper:分布式协调服务的核心与实践
【5月更文挑战第7天】ZooKeeper是Apache的分布式协调服务,确保大规模分布式系统中的数据一致性与高可用性。其特点包括强一致性、高可用性、可靠性、顺序性和实时性。使用ZooKeeper涉及安装配置、启动服务、客户端连接及执行操作。实际应用中,面临性能瓶颈、不可伸缩性和单点故障等问题,可通过水平扩展、集成其他服务和多集群备份来解决。理解ZooKeeper原理和实践,有助于构建高效分布式系统。
|
4天前
使用JWT的服务分布式部署之后报错:JWT Check Failure:
使用JWT的服务分布式部署之后报错:JWT Check Failure:
54 1
|
4天前
|
SpringCloudAlibaba Dubbo 应用服务中间件
【微服务】微服务初步认识 - 微服务技术如何学习 · 认识微服务架构
【微服务】微服务初步认识 - 微服务技术如何学习 · 认识微服务架构
12 0
|
1天前
|
运维 监控 Docker
使用Docker进行微服务架构的部署
【5月更文挑战第18天】本文探讨了如何使用Docker进行微服务架构部署,介绍了Docker的基本概念,如容器化平台和核心组件,以及它与微服务的关系。通过Docker,每个微服务可独立运行在容器中,便于构建、测试和部署。文章详细阐述了使用Docker部署微服务的步骤,包括定义服务、编写Dockerfile、构建镜像、运行容器、配置服务通信、监控和日志管理以及扩展和更新。Docker为微服务提供了可移植、可扩展的解决方案,是现代微服务架构的理想选择。
|
1天前
|
敏捷开发 监控 API
构建高效微服务架构:从理论到实践
【5月更文挑战第18天】 在当今快速发展的软件开发领域,微服务架构已经成为一种流行的设计模式,它通过将大型应用程序分解为一系列小型、独立的服务来提高系统的可伸缩性、弹性和维护性。本文旨在探讨如何从理论走向实践,构建一个高效的微服务架构。文章首先介绍微服务的基本概念和优势,然后详细讨论了在设计和部署微服务时需要考虑的关键因素,包括服务划分、通信机制、数据一致性、容错处理和监控策略。最后,结合具体案例分析,展示如何在现实世界中应用这些原则,确保微服务架构的高效运行。
|
1天前
|
存储 弹性计算 运维
探索微服务架构下的服务治理
【5月更文挑战第18天】 在当今软件工程领域,微服务架构因其灵活性、可扩展性以及促进团队协作等优势而受到广泛青睐。然而,随着系统规模的增长和服务数量的膨胀,服务治理成为确保系统稳定性和高效性的关键因素。本文将深入探讨微服务环境下的服务治理实践,包括服务发现、配置管理、负载均衡、故障处理等关键方面,旨在为开发者提供一套行之有效的服务治理策略。
|
1天前
|
监控 持续交付 开发者
构建高效微服务架构:后端开发的新范式
【5月更文挑战第18天】 随着现代软件开发的复杂性日益增长,传统的单体应用架构已难以满足快速迭代和灵活部署的需求。本文聚焦于一种新兴的解决方案——微服务架构,探讨其如何为后端开发带来革命性的改变。我们将深入分析微服务的核心概念、优势与挑战,并通过具体案例来阐述如何在实际项目中实施微服务架构。文章旨在为开发者提供一种系统化的方法,帮助他们理解并应用微服务架构,以提升系统的可维护性、扩展性和技术敏捷性。
9 2
|
1天前
|
测试技术 持续交付 API
构建高效的微服务架构:后端开发的现代实践
【5月更文挑战第18天】在数字化转型的浪潮中,微服务架构已成为企业追求敏捷、可扩展和容错能力的关键解决方案。本文将深入探讨微服务的核心概念,包括其设计原则、技术栈选择以及实施过程中的挑战与对策。通过对微服务架构实践的详细剖析,旨在为后端开发人员提供一套构建和维护高效微服务系统的实用指南。
|
1天前
|
缓存 算法 Apache
微服务架构下的服务发现与注册机制
【5月更文挑战第18天】 随着现代软件系统向着分布式和微服务架构演进,服务发现与注册成为确保系统弹性和可伸缩性的关键因素。本文将探讨在微服务环境下实现服务发现与注册的模式,分析其必要性,并深入讨论常见的解决方案以及面临的挑战。文中不仅介绍了服务发现的基本原理和流程,还对流行的服务发现工具如Consul、Etcd和Zookeeper进行了比较,最后提出了一套优化策略以增强系统的鲁棒性和性能。

相关产品

  • 微服务引擎