arctic数据库使用教程(1)---为啥要用arctic以及arctic的简单应用

简介: arctic数据库使用教程(1)---为啥要用arctic以及arctic的简单应用

为啥使用数据库


在做量化投研的过程中,一个适合的数据库往往能够提高工作的效率,在过去的工作研究经历中,使用过csv文件、pickle文件、mysql、mogodb等数据库,在我自己以后的投资研究过程中,尝试使用mongodb数据库和man-group(英士曼集团)开源的基于mongodb的数据库框架-ARCTIC,应该足够能够满足我的投研需要了。


必须要说明的是,arctic数据库应该算不上最快的时序数据库,有很多收费或者免费的数据库都比它效率要高一些,比如收费的kdb+数据库,半收费的dophindb等,arctic的优势在于免费、简单易用,所以在存储股票、期货、基金、期权、债券、可转债、外汇等数据的时候,我选择了ARCTIC。


安装教程


使用之前首先需要在电脑上安装mongodb数据库,需要安装python,然后安装arctic。


数据库命名


在使用ARCTIC的时候,需要创建两个名字,一个是library_name,一个是symbol_name,所以对数据库的名字做一个统一的规定,library_name是大类资产的名字,symbol_name是具体资产__周期__交易所的名字,这样同一规定之后,方便后续数据的管理工作。


股票 — STOCKS

期货 — FUTURES

基金 — FUNDS

期权 — OPTIONS

债券 — BONDS

可转债 — CBONDS

外汇 ---- FORES

数字货币 — DIGITALS


一个存储数字货币的例子

import gzip
import os,sys
import pandas as pd
from arctic import Arctic
# 连接数据库
conn = Arctic('127.0.0.1')
# 判断library是否存在,如果不存在就创建一个
if "DIGITALS" not in conn.list_libraries():
    conn.initialize_library("DIGITALS")
# 连接到具体的library中
lib = conn["DIGITALS"]
# 遍历数据并存储
data_root = "/home/yun/Downloads/spot/"
timeframe = "1m"
symbol_type = "spot"
exchange = "binance"
file_list = os.listdir(data_root)
for file in file_list:
    symbol = file.split(".")[0]
    symbol_name = symbol+"__"+timeframe+"__"+symbol_type+"__"+exchange
    with gzip.open("/home/yun/Downloads/spot/"+file, 'rb') as f:
        df = pd.read_csv(f)
        lib.write(symbol_name, df)
        print(f"存储数据{file}成功")
    # 读取数据
    # symbol_name = 'USDS-USDT__1m__spot__binance'
    # data = lib.read(symbol_name).data
    # 判断是否满足 data == df


读取数字货币数据,并使用plotly_express画出收益率直方图,观察收益率分布情况

# 获取数据
import gzip
import os,sys
import pandas as pd
from arctic import Arctic
# 连接数据库
conn = Arctic('127.0.0.1')
# 连接到具体的library中
lib = conn["DIGITALS"]
# 打印当前library中有多少的symbol
symbol_list = lib.list_symbols()
# 循环数据,并打印数据,生成一个1分钟收益率,然后生成一个直方图
data = pd.DataFrame()
count = 0
for symbol in symbol_list:
    if "spot" in symbol:
        count+=1
        name = symbol.split("__")[0]
        df = lib.read(symbol).data
        df['ret'] = df['close'].pct_change()
        df['name'] = name
        df = df[['ret','name']]
        if count<3:
            data = data.append(df)
        print(symbol)
data = data.dropna()
import plotly_express as px
fig = px.histogram(data,x="ret",color="name")
fig.show()

从1分钟收益率的直方图上来看,这两个数字货币的绝大多数时间内收益率波动都比较小,但是有极少数的1分钟K线的收益率非常高或者非常低。f528e575333242ce80de03fa2081ca5d.png

目录
相关文章
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
4月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
5月前
|
安全 druid Nacos
0 代码改造实现应用运行时数据库密码无损轮转
本文探讨了敏感数据的安全风险及降低账密泄漏风险的策略。国家颁布的《网络安全二级等保2.0标准》强调了企业数据安全的重要性。文章介绍了Nacos作为配置中心在提升数据库访问安全性方面的应用,并结合阿里云KMS、Druid连接池和Spring Cloud Alibaba社区推出的数据源动态轮转方案。该方案实现了加密配置统一托管、帐密全托管、双层权限管控等功能,将帐密切换时间从数小时优化到一秒,显著提升了安全性和效率。未来,MSE Nacos和KMS将扩展至更多组件如NoSQL、MQ等,提供一站式安全服务,助力AI时代的应用安全。
359 14
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
494 5
|
2月前
|
存储 弹性计算 Cloud Native
云原生数据库的演进与应用实践
随着企业业务扩展,传统数据库难以应对高并发与弹性需求。云原生数据库应运而生,具备计算存储分离、弹性伸缩、高可用等核心特性,广泛应用于电商、金融、物联网等场景。阿里云PolarDB、Lindorm等产品已形成完善生态,助力企业高效处理数据。未来,AI驱动、Serverless与多云兼容将推动其进一步发展。
174 8
|
2月前
|
存储 弹性计算 安全
现有数据库系统中应用加密技术的不同之处
本文介绍了数据库加密技术的种类及其在不同应用场景下的安全防护能力,包括云盘加密、透明数据加密(TDE)和选择列加密。分析了数据库面临的安全威胁,如管理员攻击、网络监听、绕过数据库访问等,并通过能力矩阵对比了各类加密技术的安全防护范围、加密粒度、业务影响及性能损耗。帮助用户根据安全需求、业务改造成本和性能要求,选择合适的加密方案,保障数据存储与传输安全。
|
4月前
|
安全 Java Nacos
0代码改动实现Spring应用数据库帐密自动轮转
Nacos作为国内被广泛使用的配置中心,已经成为应用侧的基础设施产品,近年来安全问题被更多关注,这是中国国内软件行业逐渐迈向成熟的标志,也是必经之路,Nacos提供配置加密存储-运行时轮转的核心安全能力,将在应用安全领域承担更多职责。
|
3月前
|
存储 人工智能 数据库
视图是什么?为什么要用视图呢?数据库视图:定义、特点与应用
本文三桥君深入探讨数据库视图的概念与应用,从定义特点到实际价值全面解析。视图作为虚拟表具备动态更新、简化查询、数据安全等优势,能实现多角度数据展示并保持数据库重构的灵活性。产品专家三桥君还分析了视图与基表关系、创建维护要点及性能影响,强调视图是提升数据库管理效率的重要工具。三桥君通过系统讲解,帮助读者掌握这一常被忽视却功能强大的数据库特性。
852 0
|
5月前
|
SQL 数据库
软考软件评测师——数据库系统应用
本文介绍了关系数据库的基础知识与应用,涵盖候选码定义、自然连接特点、实体间关系(如1:n和m:n)、属性分类(复合、多值与派生属性)以及数据库设计规范。同时详细解析了E-R图转换原则、范式应用(如4NF)及Armstrong公理体系。通过历年真题分析,结合具体场景(如银行信用卡额度、教学管理等),深入探讨了候选键求解、视图操作规范及SQL语句编写技巧。内容旨在帮助读者全面掌握关系数据库理论与实践技能。

热门文章

最新文章