cython与python运行效率的对比分析

简介: cython与python运行效率的对比分析
# Python运行文件,命名为cal_fib.py
import time
def fib(n):
    begin=time.time()
    a,b=0,1
    for i in range(n):
        a,b=a+b,a
    end=time.time()
    print(end-begin)
    return a
fib(1000000)

cython环境配置:ubuntu18.04,anaconda3,python3.7,cython 0.28

cython第一个文件:

# 命名为 cal_fib.pyx
import time
def fib(n):
    begin=time.time()
    a,b=0,1
    for i in range(n):
        a,b=a+b,a
    end=time.time()
    print(end-begin)
    return a

cython 第二个文件:

from distutils.core import setup
from Cython.Build import cythonize
setup(name='test',
      ext_modules=cythonize("cal_fib.pyx"))

转移到cython文件所在的目录,使用命令进行编译:

python setup.py build_ext --inplace

之后会生成编译好的文件。然后在Python中,

from cal_fib import fib
fib(100000)

可以得到运行所需时间和得到的数值:

运行时间为0.1033秒,得到的斐波那契数字太大,忽略

使用Python方法运行,得到的时间为9.0秒

在这个案例中,cython运行的效率比Python提高了90倍左右


# 如果计算的斐波那契数字比较小,两者相差的效率不会这么大。随着计算级别增加,cython的效率可能随之提高。


# 参考文章:http://docs.cython.org/en/latest/src/quickstart/build.html



目录
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
3月前
|
缓存 监控 算法
item_get - Lazada 商品详情详情接口深度分析及 Python 实现
Lazada商品详情接口item_get可获取商品全维度数据,包括价格、库存、SKU、促销及卖家信息,支持东南亚六国站点,适用于竞品监控、定价策略与市场分析,助力跨境卖家精准决策。
|
3月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
3月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
3月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。

推荐镜像

更多